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INTRODUCTION
In a paper presented at the annual meeting of this Association

about two years ago, the writer outlined a rational approach to
the design of bituminous paving mixtures based on the triaxial
test. This method was limited to bituminous paving mixtures for
which the triaxial data provide straight line Mohr envelopes.

While triaxial data for a great many bituminous paving mix-
tures can be best represented by straight line Mohr envelopes, it
appears that there are certain bituminous mixtures for which a
curved Mohr envelope is obtained when the triaxial data are
plotted. It is with this latter case that the present paper is chief-
ly concerned.

A rational approach to the design of bituminous pavements can
be defined as a method for determining or expressing their
strength or stability in terms of pounds per square inch or some
other unit stress basis, similar to those employed for indicating
the strength of steel, concrete, etc. The study leading to this
rational approach was undertaken to investigate the design re-
quirements for bituminous pavements in general, but especially
for those capable of supporting tire pressures of 300, 400, 500
psi z 9 etc under consideration for future aircraft, and in particu-
lar to attempt to determine the minimum c and  values required
by bituminous mixtures to support various wheel loads and tire
pressures.

In view of the common current use of empirical tests such as
Marshall, Hveem Stabilometer, and Hubbard-Field, it might be
asked why there should be any interest in endeavouring to develop
a rational method of design for bituminous pavements. This query
can be answered by another question. What Hveem Stabilometer
rating* should be specified for a bituminous pavement intended to
carry a tire pressure of 400 psi., for example, or what 
Field or Marshall stability value? No suitable answer to this
question can be given until the stability values for bituminous
mixtures measured by each of these empirical tests have been
correlated with test sections that have performed adequately when
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subjected to traffic by tires inflated to 400 psi. On the other hand,
if we had a satisfactory rational method of design for bituminous
pavements, it would be no more difficult to design bituminous
paving mixtures of adequate stability for tire pressures of 100,
200, 400 psi., etc than it now is to design bridges of the re-
quired strength regardless of whether the span is to be 50 feet,
500 feet, or 5,000 feet, etc.

In addition, we do not know what safety factors these empirical
methods are actually employing. Furthermore, they may be re-
jecting paving mixtures that would actually develop the stability
required and may be permitting and even encouraging the use of
others that will not always be stable in the field.

Finally, a rational method of design, because of its theoretical
background, is able to suggest possible solutions to certain de-
sign problems in any engineering field that would not even be
dreamed about on the basis of empirical tests. That the design
of bituminous pavements is no exception to this will be demon-
strated later in the present paper.

BITUMINOUS MIXTURES WITH STRAIGHT
MOHR ENVELOPES

Before outlining a rational approach to the design of bitumi-
nous paving mixtures with curved Mohr envelopes, it is neces-
sary to review some of the important subject matter from three
earlier papers  which described a rational approach to the
design of bituminous paving mixtures with straight line Mohr
envelopes.

It was assumed in these earlier papers  as it will be in
this, that the thickness of base course and surface is adequate to
prevent  failure and that the base course material itself
will not fail under the shearing stresses imposed by any of the
applied loads, Figure 1. The problem under consideration, there-
fore, is the development of a rational method for designing bitumi-
nous paving mixtures that will have sufficient strength or stability
to resist failure (being squeezed out between tire and base course)
under the wheel loads and tire pressures to which they are to be
subjected. These paving mixtures are assumed to have been
properly designed in every other respect, such as workability,
density, durability, etc.

Very often the first important step toward the solution of a
problem has been taken if the nature of the problem has been
clearly outlined. It is possible that the development and continued
use of empirical tests such as Marshall, Hveem, and 
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Fig. 1. Diagram of Shear Planes Under a Loaded Area.

Field, is due at least in part to the failure of bituminous paving
engineers to clearly recognize the precise nature of the bitumi-
nous pavement stability problem. In Figure 2(a), the change in
pressure across the transverse axis of the contact area of a tire
resting on a pavement is indicated by the line  tire pres-
sure curve. The pressure rises rapidly from zero at either edge
of the contact area to a peak maximum thought to be due to the
walls of the tire, and then drops slightly from these peaks toward
the centre. This shape for the tire pressure curve is indicated
by the work of Teller and Buchanan (4) and of 0.  Porter 
although  and Starks (6) believe as a result of their
measurements that the two peaks shown in Figure 2(a) do not
occur, and that the pressure continues to increase slightly to-
ward the centre for both stationary and moving tires, instead of
decreasing as illustrated in Figure 2(a). It is apparent, therefore,
that more experimental work is required to investigate the shape
of the curve of tire pressure across the contact area.

Assuming that the tire pressure curve shown in Figure 2(a) is
reasonably representative, the nature of the stability problem be-
comes quite apparent. Most engineers would probably require
that the stability developed by the bituminous pavement at all
points on the contact area must be at least equal to the pressure
applied by the tire at each of these points, Figure 2(b). That is,
the stability curve must not cut through the pressure curve at any
point, since the pavement would tend to be unstable for the portion
of the contact area for which the stability curve was below the
pressure The critical stability curve, therefore, is the
one that is just tangent to the pressure curve illustrated in
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Fig. 2. Diagram Illustrating the Nature of the Stability Prob-
lem for Bituminous Paving Mixtures.

Figure 2(b). The question arises as to which  the three straight
lines of positive, zero, and negative slope drawn tangent to the
tire pressure curve in Figure 2(b) is the critical stability curve.
It was demonstrated earlier  that the critical stability
curve tends to be a curved rather than a straight line, and that it
generally slopes upward from a point at the edge of the contact
area. The stability problem, therefore, requires the development
of a method for determining the shape, location, and slope of the
stability curve for any bituminous pavement, and comparing it
with the severest loading in the form of a tire pressure curve to
which the pavement is likely to be subjected, Figure 2(b). It
should be noted in passing that it is not possible to plot the 
bility value given by any one of three empirical tests, 
Field, Hveem Stabilometer, or Marshall, for a bituminous paving
mixture, as a stability curve, or even as a single point on the

. diagram of Figure 2(b). That is, the stability value given by any-
one of these tests for a bituminous paving mixture cannot be com-
pared directly with the curve of the tire pressure to be applied to
the pavement.

It was pointed out in the earlier papers  that the sta-
bility requirements for a bituminous paving mixture depend upon
whether the applied wheel load is: (a) static or moving very



STABILITY DESIGN 353

slowly, e.g., parking areas, taxiways, etc.; (b) moving rapidly at
uniform speed, e.g., rural highways or the central portion of air-
port runways; or (c) subjecting the pavement to severe braking
or acceleration stresses, e.g., stop lights, bus stops.

The assumption was made that the strength characteristics of
a bituminous paving mixture are indicated by the magnitudes of
the values of cohesion c and angle of internal friction  given by
the Mohr diagram based upon triaxial test data for the mixture,
Figure 3. It was pointed out that an increase in the rate of strain
employed in the triaxial test results in an increase in the value of
cohesion c, due to the viscous resistance of the paving mixture,
but has little or no effect on the value of the angle of internal fric-
tion  This provides a rational explanation for the greater sta-
bility shown by bituminous paving mixtures under rapidly moving
as compared with static or slowly moving wheel loads, that has
been demonstrated by field experience.

It should be mentioned that an important objective of a rational
method of design for bituminous paving mixtures on the basis of
the triaxial test is to determine the smallest corresponding values
of c and  needed to provide a stable bituminous pavement for the
most critical loading conditions (wheel load and tire pressure)
anticipated throughout its lifetime. The smaller the correspond-
ing values required for c and  the wider is the range of

Fig. 3. Typical Mohr Diagram for Triaxial Compression Test.
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aggregates from which a selection may be made to provide a bi-
tuminous pavement of adequate stability. This in turn tends to
lower the cost of bituminous pavement construction.

It was assumed that the stresses involved when a loaded tire
rests on a bituminous pavement are equivalent to those of a strip
load of great length. Since it was shown that the pavement under
a loaded tire develops more stability in the direction of the longi-
tudinal than the transverse axis of the contact area, this assump-
tion is not unreasonable. However, because the actual length of
the tire contact area on a pavement is relatively short, this as-
sumption leads to somewhat conservative design.

It was pointed out that, all other factors being equal, the sta-
bility of a bituminous pavement appears to depend very material-
ly upon:

(1) the lateral support of the pavement adjacent to the loaded
area,

(2) the frictional resistance between pavement and tire and
between pavement and base, which can be expressed as an
equivalent lateral support 

(3) the shape of the curve of tire  distribution over
the contact area.

On the basis of the geometry of the Mohr diagram (Figure 
the maximum vertical load V that a bituminous pavement can sup-
port is given by the following equation:

v =  L (1)

where c = cohesion c obtained directly from the Mohr diagram,
= angle of internal friction  obtained directly from the

Mohr diagram, and
L = the total effective lateral support from all sources that

can be mobilized to react against the lateral thrust of
the prism of pavement immediately under the loaded
area.

The significance of equation (1) is illustrated by Figure 4. The
right hand side of equation (1) demonstrates that the stability V of
a material with both cohesion c and angle of internal friction 
consists of two items. The first of these, 1 +

sin ,
sents the unconfined compressive strength of the material and is
illustrated by either of Mohr circles  or  in Figure 4(b).. .
The second term, L defines the stability of a purely
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Fig. 4. Illustrating the Physical Significance of the Equation 01

Stability Provided by the Mohr Diagram.

cohesionless material; that is, a material for which the Mohr en-
velope goes through the origin. Consequently, for any given lat-
eral pressure L, the stability V of a cohesive material is made
up of V”, the stability of a corresponding cohesionless material
having the same angle of internal friction  plus the unconfined
compressive strength of the cohesive material, represented by
either OV’ or  Expressed in another way, the difference in
stability between a purely cohesionless material with a given
angle of internal friction  and a material having both cohesion
c and the same angle of internal friction  is the unconfined com-
pressive strength of the latter material.

That the lateral pressure L should influence only the frictional
element of resistance represented by the angle of internal friction

 even in a material with both c and  is clear from an examina-
tion of Figure 4(a) and the Coulomb equation. When the lateral
pressure L = 0, the maximum vertical load V that the element of
Figure 4(a) can sustain is equal to its unconfined compressive
strength. When the lateral support L has some positive value,
the normal stress n on the plane of failure of the element is in-
creased, Figure 4(a), and the maximum vertical load V that can
be supported without failure is also correspondingly increased.
However, the Coulomb equation, s = c + n tan  indicates that this
increase in normal pressure n on the plane of failure influences
only the frictional element of the shearing resistance of the
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material represented by tan  Consequently, although it has no
effect on the cohesive element of resistance of a material, the
lateral support L contributes to a greater vertical failure load or
stability V, because it has a direct influence on the frictional ele-
ment of resistance.

One source of lateral support L is quite obviously provided by
the pavement immediately adjacent to and surrounding the contact
area. This portion of the total effective lateral support L is desig-
nated by As previously explained  and as illustrated
by Figure 5, the unconfined compressive strength of the bitumi-
nous paving mixture can probably be taken as a conservative
measure of the lateral support  provided by the pavement im-
mediately adjacent to the loaded area; that is (from the Mohr
diagram),

= 2c 1 +
sin

Fig. 5. Illustrating that the Lateral Support L Provided by the
Portion of a Bituminous Pavement Surrounding the Loaded Area

Is Given by L
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If this value for  is substituted for L in equation  the fol-
lowing equation results after substitution and simplification,

4c 1 + sin 
sin 1 sin

The Mohr diagram illustrating the values of V in equation (3)
is shown in Figure 6, wherein the Mohr circle on the left repre-
sents the unconfined compressive strength.

Figure 7 provides a graphical representation of equation (3)
for a wide range of tire pressures. It should be emphasized that
Figure 7 illustrates a diagram for the design of bituminous pav-
ing mixtures on the basis that the only source of lateral support
L is that provided by the portion of the pavement adjacent to the
loaded area, and that L is equal to the unconfined compressive
strength of the paving mixture in each case.

It was indicated previously  that due to several other
sources of resistance, the actual value of the lateral support 
provided by the pavement surrounding the loaded area is probably
greater than the unconfined compressive strength of the paving
mixture. It was suggested that these additional sources of re-
sistance outside of the loaded area could be taken into account by
making  equal to the unconfined compressive strength multi-
plied by a factor K, when it would become

I  I I I  I  I
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Fig. 6. Diagram Illustrating Maximum Vertical Load V that Can
Be Carried by a Bituminous Pavement when Lateral Support  Is
Equal to the Unconfined Compressive Strength of the Material.
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Fig. 7. Design Chart for Bituminous Mixtures Based on

axial Test and Values of Lateral Support L =

1 + sin = 2cK sin
Substituting the right hand side of equation (4) for L in equation

(1) and simplifying, gives the following:
K (1 + sin  + (1  sin (5)

which reduces to equation (3) when K is taken equal to unity. When
V refers to the ultimate strength of the pavement,  = 1 would
probably be a conservative value for K, and it is assumed to have
this value in the equations and diagrams employed to illustrate
the principles under discussion in the present paper. Later on,
when sufficient data become available,  can be evaluated more
definitely for actual design, and the appropriate value for  might
turn out to be either less or greater than unity.

The three previous papers pointed out that the frictional re-
sistance between pavement and tire, and between pavement and
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base, seem to provide an additional major source of pavement
stability. Figure 8 illustrates the nature and location of these
two frictional resistances, and Figures 8(b) and 9 indicate that
they can be represented mathematically by an equivalent addi-
tional lateral support 

Values of the coefficient of friction f between pavement and
tire have been measured by Moyer (7) and Lee  who report
values of f up to 1 .O for stationary or slowly moving vehicles,
although 0.8 is a more normal top value. No data seem to be
presently available concerning the value of g, the coefficient of
friction between pavement and base. For a rational method of
design, values for f and g must be either determined or assumed
for pavement design for each individual project.

Figure 9 illustrates a method for evaluating the total frictional
resistance between pavement and tire and between pavement and
base in terms of the equivalent lateral support L,, and for ex-
pressing the maximum value of  that can be developed as a
simple mathematical equation,

 = n  + Q) (c + V tan 

Fig. 8. Diagram Illustrating that Friction Between Tire and
Pavement and Between Pavement and Base Is Equivalent to Ad-
ditional Lateral Support for the Section of Pavement Under a
Loaded Area.
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Fig.  Diagram Illustrating the Magnitude of the Lateral Sup-
port LR Equivalent to the Frictional Resistance Developed Be-
tween Tire and Pavement and Between Pavement and Base, Under
the Loaded Area.

Figure 9 explains that the factor P in equation (6) indicates
that the maximum frictional resistance  that can be developed
between pavement and tire cannot exceed the shearing resistance
of the bituminous pavement itself, which is given by the Coulomb
equation s = c + V tan  where V is the pressure applied by the
tire to the contact area. The factor Q is of similar significance
with respect to the frictional resistance  between pavement and
base. As shown by Figure 9, the highest value that either P or
Q can have individually is unity, and the lowest value is zero.
Therefore, the maximum value for P + Q = 2, and the minimum
value is zero.

In actual practice it may be found that either P or Q can de-
velop a larger value than unity. However, since there is no pres-
ent reason for expecting this, it is assumed that neither P nor Q
can have values greater than unity.

Equation (6) can be rewritten in terms of f and g, rather than
P and Q, when it becomes,
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It is apparent that the total effect  later al suppor
ed by a bituminous pavement can be expressed as

 +g)

from which it follows that equation (1) can be rewr  as

Equation (9) makes it clear that the stability of a bituminous
pavement consists of thr ee principal parts :

a The stability due to unconfined compressive strength of the
pavement represented by the first term on the right hand
side, 1 + sin 

1 This might be referred to as the in-
herent strength of the pavement in the complete absence of
lateral support from the surrounding material, and of fric-
tional resistance between pavement and tire and between
pavement and base.
Stability due to the lateral support  provided by the por-
tion of the pavement adjacent to the loaded area, and
pressed by the term 
Stability due to a lateral support  equivalent to the fric-
tional resistance between pavement and tire and between
pavement and base, and represented by the term

 addition, a further source of stability in the form of arching
action, particle interference, etc., due to their composition and
thickness, may exist in certain bituminous pavements. This could
be referred to as structural stability. Where it exists, structural
stability might be evaluated as the difference between the total
stability developed, and the stability calculated on the basis of
equations (10) and (11).

develop-

1
1  sin 

Since has already been evaluated by equation  and  by
equation (6 , and remembering that the pressure exerted by a tire
is not uniform, but varies across the contact area  e.g.,
Figure 2, equation (9) can be written as follows:
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 =

+ n (P

where V =

K=

P=

Q

n=

stability in psi. developed by the bituminous pavement
at any point on the contact area,
unit cohesion in psi. obtained from the Mohr diagram,
angle of internal friction obtained from the Mohr dia-
gram,
a constant, which may be taken equal to unity for con-
servative design,
ratio of frictional resistance  between pavement and
tire to the shearing resistance of the pavement repre-
sented by the Coulomb equation s = c + V tan  and,
therefore, has a maximum value of unity,
ratio of frictional resistance  between pavement and
base to the shearing resistance of the pavement
c + V tan  and has a maximum value of unity,
the number of elements, each of width equal to
t tan (45 , measured from the edge of the con-
tact area to the point on the contact area where the
value of stability V is required, where t is the thick-
ness of pavement,
the average vertical pressure exerted by the tire be-
tween the edge and the point on the contact area at
which the value of stability V is required.

When  is represented by equation (7) instead of equation 
equation (10) becomes,

 +g)

where f  of friction between pavement and tire,
g = coefficient of friction between pavement and base, and

the other symbols have the significance previously de-
fined for them.

In Figure 9 and equations  and  the quantity
 occurs . It measures the distance  from the edge to any

point  on the contact area as the number of unit elements each
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Fig. 10. Illustrating Magnitude of Lateral Support  When
d

 Is Substituted for n tan

of width,  where b = t tan ; that is, from Figure 10,

or
dConsequently, may be substituted for n tan

tions  and (11). When this substitution is made, equa-
tion (6) becomes

 =  +  +  tan 

equation (7) becomes
 = (15)

equation (10) becomes

V=

+
0

(P + Q) (c +  tan 
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and equation (11) becomes

v =

+  ( f + g )

The pavement thickness  appears directly in equations 
 and  but only indirectly in equations 

and (11), and might be favoured by some for that reason. Both
sets of equations are equivalent to each other in every respect,
and provide identical solutions to any given problem.

That the frictional resistance  between pavement and tire and
the frictional resistance  between pavement and base may be an
important source of stability for bituminous pavements, is illus-
trated by Figure 11, in which the straight line stability curves for
various values of P + Q and f + g indicate a rapid increase of pave-
ment stability when proceeding from the edge toward the centre of
the contact area. For Figure  it was assumed that a uniform
tire pressure of 100 psi. was applied to the contact area, and that

BASE

Fig. 11. Relationships Between Applied Load and Stability of
Bituminous Pavements at Varying Distances from Edge Under the
Loaded Area and for Different Degrees of Frictional Resistance
Developed Between Pavement and Tire and Between Pavement and
Base. (Pavement Stability Equal to Applied Load for Edge Condi-
tions.) Aeroplane Tire.
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the stability of the pavement was exactly 100 psi. at the edge of the
contact area, due to the first two terms on the right hand side of
equations  (11), and  The increase in stability
of the pavement underlying the loaded area when proceeding from
the edge to the centre of the contact area, illustrated by the sta-
bility curves in Figure 11, was calculated by means of the third
term on the right hand side of equations (10) or (16) for the
P + Q curves, and by means of the third term on the right hand
side of equations (11) or (17) for the stability curves  with
f + g values. Figure 11 demonstrates that even a low value for
f + g = 0.325 raises the stability of the pavement near the centre
of the contact area to more than four times its stability at the
edge, for the particular conditions pertaining to this diagram.

Other evidence of the considerable influence of frictional re-
sistance between pavement and tire and between pavement and
base on the stability of bituminous mixtures is provided by the
fact that Jurgenson (9) designed a test for measuring the shearing
resistance of clay, by squeezing it between two rough surfaces,
e.g., Figure 8. In this case, also, the maximum shear is devel-
oped at each of the two interfaces.

As a further check on the importance of these two frictional
resistances, the load was applied to a layer of plasticine (a
modeling clay) 0.75 inch thick and resting on a large steel plate,
by means of steel bearing plates 3, 6, 9, and 12 inches in diame-
ter. Some very preliminary results are shown graphically in
Figure 12 for a vertical deformation of 0.05 inch in each case.
They indicate that due to the greater distance between centre and
edge over which the two frictional resistances are acting as the
bearing plate diameter is increased, the load carried by the 12
inch plate, 57.5 psi., is over two and one-half times the load
carried by the 3 inch plate, 22.4 psi. It will be recalled that for
load tests at the surface of a great depth of clay, the unit pres-
sure supported at any given deflection decreases with increasing
diameter of the bearing plate, and that the curve of unit pressure
versus plate diameter would slope down from the  plate,
instead of sloping upward as in 
fluence of the frictional resistances between the plasticine and the
upper and lower bearing surfaces on the strength or stability de-
veloped by the plasticine is even greater may
cate as a first impression. It should be emphasized again that
Figure 12 represents the results of 
which will be repeated much more 

 fine examples of 
al resistance between pavement 
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Fig. 12. Increase in Supportin  Value of  Layer with
Increase in Diameter of Bearing Plate.

have been provided by field experience. An otherwise 
designed paving mixture, when laid on a smooth base, or on a
base to which it is poorly bonded or not at all, will quickly develop
indications of instability under traffic, quite often in the form of
large tension cracks of well-recognized pattern.

Figure 13 illustrates the application of equations (10) or (16)
and (1
ture.

1) or (1’7) to the actual design
The heavy continuous curve r

of a bitum
epresents

inous pavi
the actual e

applied to the pavement by the tire at all points across the trans-
verse axis of the contact area 

The short curves on the right and left hand sides of Figure 13
are stability curves for different values of f + g for a given paving
mixture for which c = 6.9 psi. and  =  as indicated. The posi-
tions of these stability curves are located by applying equations
(10) or (16) and (11) or (17). The location of the stability curve at
the edge of the contact area (75 psi.) is calculated by means of the
first two terms on the right hand side of these equations; that is,
on the basis that the only source of pavement stability is the un-
confined compressive strength of the pavement (the first term on
the right hand side of equations (10) or (16) and (11) or (17) ), plus
the stability due to the lateral support provided by the pavement
adjacent to the loaded area (the second term on the right hand side
of the same equations). The location of the stability curve at the
edge of the loaded area, 75 psi., can also be read directly from
Figure 7, employing the co-ordinates c = 6.9 psi. and  =  or
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 6.9 P.S.1

Fig. 13. Influence of Typical Pressure Distribution over the
Contact Area, and of Various Degrees of Frictional Resistance
Between Pavement and Tire and Between Pavement and Base in
Terms of f + g Values on the Design of the Underlying Bituminous
Pavement (Truck Tire).

can be calculated by means of equation (3). The increase in sta-
bility with increasing distance inward from the edge of the contact
area indicated by the stability curves of Figure 13 is due to the
frictional resistance between pavement and tire and between pave-
ment and base, and is calculated by means of the third term on the
right hand side of equations (10) or (16) and (11) or  equations
(10) or (16) being employed for the P + Q = 2 curve and equations
(11) or (17) for the f + g = 0.93 and f + g = 0.5 curves. These sta-
bility curves indicate that because of the influence of these two
frictional resistances, the pavement can sustain a higher and high-
er vertical‘  the centre of the contact area is approached
from the edge; that is, its stability increases with increasing dis-
tance inward from the edge of the loaded area.

The ordinate axis in the centre of the diagram indicates values
for both tire pressure exerted on the contact area andpavement
stability. If it is assumed that the stability of the pavement must
be not less than the pressure applied by the tire at any location on
the contact area, then it is apparent that the stability curve must
not cut through the pressure curve at any point. It is equally clear
that the critical stability curve is the one that is just tangent to
the pressure curve. In Figure 13, the stability curve for
f + g = 0.5 cuts through the pressure curve, indicating that the
pavement would be unstable for the portion of the contact area for
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which the stability curve lies below the pressure curve. The sta-
bility curve for f + g = 0.93 is just tangent to the pressure curve,
and indicates the lowest value of f + g for which this particular
paving mixture (c = 6.95 psi.,  would be stable at all points
on the contact area. The stability curve  P + Q = 2, on the
other hand, indicates the highest f + g values that could be de-
veloped for this paving mixture, since any f + g stability curve
lying above this P + Q = 2 curve would represent a value of fric-
tional resistance between pavement and tire or between pavement
and base, or both, that was greater than the shearing resistance
of the bituminous pavement. It is apparent that the pavement
would fail in shear before such a high value for f or g or f + g
could be developed.

The importance of frictional resistance between pavement and
tire and between pavement and base on bituminous pavement de-
sign is emphasized in Figure 14, in which stability curves for

= 0.2, f + g = 0.6, and f + g = 1.2 are shown on the
right-hand side. These stability curves demonstrate very clearly
the decrease in values of c and  that is possible as the f + g
values are increased. For example, when f + g = 0, a paving mix-
ture with c = 7.8 psi. and  developing a’ stability of 107 psi.
at the edge of the contact area is required, while for f + g = 1.2 a
bituminous mixture with c = 40 psi. and  =  developing a

Fig. 14. Illustrating the Influence of Frictional Resistance Be-
tween Pavement and Tire and Between Pavement and Base on the
De sign of Bituminous Pavements.
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stability of only 54 psi. at the edge of the contact area is adequate;
that is, by increasing the f + g value from 0 to-l  the stability
requirements for the paving mixture in terms of c and  values
have been reduced by one-half.

It has long been known that the stability of a bituminous pave-
ment is materially influenced by its thickness. It has been quite
commonly observed that a thick layer of a given bituminous pav-
ing mixture may develop instability under either stationary or
moving traffic, whereas a thin layer of the same paving mixture
may be quite stable under the same traffic. That this is precisely
what would be expected if pavement stability is influenced by the
frictional resistances between pavement and tire and between pave-
ment and base is illustrated by Figures 15 and 16.

In Figure 15, the pressure curve represents smoothed out data
for the variable tire pressure across the transverse axis of the
contact area for a load of 200,000 lbs. on a single airplane tire as
measured by Porter (5). The stability curves in the upper 
hand corner for different thicknesses of a given bituminous paving
mixture (c = 7.7 psi.,  =  are based upon equations (11) and
(17). Values of K = 1 and f + g = 0.2 were selected for purposes

PRESSURE CURVE

Fig. 15, Influence of Pavement Thickness on Pavement Stabili-
ty for Stationary Wheel Loads or Wheel Moving at a Uniform
Speed (Aeroplane Tire).
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of illustration. The value of the thickness t shown for each sta-
bility curve can be verified by means of the equations given in
Figures 9 or 10, or by equation (17). Figure 15 demonstrates that
the maximum thickness of pavement that can be selected for the
conditions pertaining to this diagram is 3 in. The stability curve
for a thickness of 6 in., for example,cuts through the curve repre-
senting applied pressure, and indicates that for this thickness the
applied pressure  be greater than the pavement stability
over a considerable portion of the contact area.

It should be emphasized that the information illustrated in Fig-
ure 15 is based entirely upon the pressure distribution curve, pav-
ing mixture (c = 7.7 psi.,  =  f + g = 0.2, K = 1, and other con-
ditions illustrated in this figure. A change in any one of these
variables would ordinarily have the result that some other thick-
ness than 3 inches would be critical. This is well illustrated in
Figure 16, where the pressure distribution curve is for a truck
tire, f + g = 0.6, K =  and the characteristics of the paving mix-
ture are represented by c = 4.54 psi.,  =  The stability curves
in the upper right-hand corner indicate that the stability curve for
thickness t = 1.5 in. is just tangent to the pressure curve, and is
the maximum thickness that could be selected for a stable pave-
ment in this case. If a greater pavement thickness than  inches

STABILITY CURVES

Fig. Influence of Pavement Thickness on Pavement Stabili-
ty for Stationary Wheel Loads or Wheel Loads Moving at a Uniform
Speed (Truck Tire).
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were required, it would be necessary to employ a more stable pav-
ing mixture (higher values for c or  or both), or to otherwise
modify the conditions represented by Figure 16.

It should be noted again that the influence of pavement thick-
ness on pavement stability indicated by equations  (11), 
and  and illustrated in Figures 15 and 16, is in keeping with
practical observations of pavement performance under traffic.

In the field of airport runway design, one of the important cur-
rent problems is presented by the increased tire pressures for
landing wheels. Figure 1’7 demonstrates that on the basis of pres-
ent tire designs, as the tire pressure is increased, the stability of
the paving mixture must be increased. The solid pressure curve
in Figure 17 is for an average tire pressure of 100 psi., while the
dashed pressure curve corresponds to an average tire pressure
of 200 psi., the total wheel load being 8,000 lbs. in each case. If
f + g  1 .O in both cases, the stability curves of Figure 17 indicate
that the values of c and  must be increased from c = 4.5 psi. and

 to c = 9 .O psi. and  =  to give approximately double
the pavement stability as the tire pressure is increased from 100
psi. to 200 psi. This demonstrates that many existing bituminous
pavements will be unstable if tire pressures are increased to 300,
400, 500 psi., etc as sometimes suggested for future aircraft.
In addition, as these tire pressures increase, the c and  values

LB.
I

 STABILITY
 ,

\
\

Fig. 17. Illustrating Increased Pavement Stability Required
when Tire Pressure Is Increased from 100 to 200 psi.
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of paving mixtures must be further increased to provide the neces-
sary pavement stability. This, in turn, means that fewer and few-
er aggregates will have the properties needed to produce bitumi-
nous pavements with the increased stability required. Further-
more, the design of stable bituminous pavements for these pro-
posed high tire pressures might be a serious problem in areas
where only inferior aggregates occur.

On the basis of the subject matter that has just been presented,
a rational method of design for bituminous pavements requires
that:

(a) the shape of the most critical curve of distribution of tire
pressure on the contact area must be known;

(b) the coefficients of friction between pavement and tire, f, and
between pavement and base, g, must be known;

(c) values for c and  for the bituminous mixture must be de-
termined;

(d) the pavement thickness must be specified;
(e) the stability curve must be drawn using equations  (11),

 or (17); and
(f) the stability curve should be tangent to or above the pres-

sure distribution curve for all points on the contact area,
to provide the minimum stability required.

The Influence of Tire Design
On the basis of Figure 17, if the tire pressure is increased, the

stability of the paving mixtures that are to carry these higher tire
pressures must also be increased. This is the only solution to the
problem of pavement design for higher tire pressures that can be
offered by the current empirical methods for bituminous mixture ,
design, such as Hubbard-Field, Hveem, Marshall, etc.

On the other hand, while the rational approach to the design of
bituminous paving mixtures that has just been outlined indicates
that paving mixtures of greater stability is one answer to the prob-
lem of higher tire pressures, it also suggests another possible
solution.

Instead of constructing pavements of higher and higher stabili-
ty, it indicates that by certain modifications in the design of tires,
many existing pavements might continue to be stable in spite of
much higher tire pressures. In addition, these high tire pressures
might be safely carried by new pavements of moderate stability.

The objective to be achieved by the modifications in tire design
suggested by this rational approach consists of flattening the slope
of the curve of tire pressure distribution near the edge of the
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contact area, as illustrated in Figure 18. The unbroken tire pres-
sure distribution curve shown in Figure 18 is representative of
that for an average current tire, and has a steep slope near the
edge of the contact area. The dashed tire pressure distribution
curve illustrates the much flatter slope near the edge of the loaded
area that would be obtained by means of a modified tire design.
The stability curves tangent to these two pressure distribution
curves demonstrate the large decrease in pavement stability (c
and  values) that is possible by decreasing the slope of the tire
pressure curve near the edge of the contact area. Both stability
curves are drawn for a value of f + g = 0.65. The stability curve
tangent to the steeper unbroken tire pressure curve indicates that
a bituminous pavement for which c = 7.35 psi. and  =  provid-
ing a stability of 80 psi. (equation 3) at the edge of the contact area
(due to the pavement surrounding the loaded area) is required,
while the stability curve tangent to the dashed line pressure curve
of flatter slope demonstrates that a bituminous pavement for which
c = 1.75 psi. and =  providing a stability of only 19 psi. at the
edge of the contact area, is needed; that is, by decreasing the slope
of the tire pressure curve near the edge of the contact area (Fig-
ure  the stability requirement for the paving mixture in this
particular case was reduced from 80 psi. to 19 psi.

It is apparent, therefore, that by flattening the slope of the tire
pressure distribution curve near the edge of the contact area, very

Fig. 18. Influence of Shape of Pressure Distribution Curve
Across the Contact Area on  Pavement Design.
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much higher tire pressures could be supported by many existing
bituminous pavements, or by new pavements of relatively low
stability (low c and  values).

Tire manufacturers may be able to produce ordinary tires for
which the slope of the pressure distribution curve is much flatter
near the edge of the contact area than is the case with present
tires. However, Figure 19 demonstrates that there is more posi-
tive approach to this problem, by utilizing a tire containing two or
more compartments, more or less concentric, each inflated to a
different pressure. Figure 19(a) illustrates such a tire consisting
of three compartments inflated to 100, 200, and 400 psi., from
outermost to innermost compartments, respectively. Figure 19(b)
indicates the action of such a tire when loaded, while Figure 19(c)
shows the principal pressure contours on the contact area of this
tire. Other pressures could be employed for the compartments
than those shown in Figure 19, and it should be clear that many
variations of this principle are possible, in some of which rubber
of different hardness or softness, etc., might replace one or
more of the gas-filled compartments of the tire.

The multi-compartment type of tire illustrated in Figure 19
has two important advantages over existing single compartment
tires designed to carry the same total load on the same contact.
area:

(a) the flatter slope of the pressure distribution curve near the
edge of the contact area lowers the c and  values (stability
requirements) needed for a stable paving mixture,

(b) the applied pressure is higher towards the centre of the
contact area, where Figures 11 to 18 have already demon-
strated the greatest pavement stability seems to be de-
veloped.

UNLOADED
LOADED

CONTACT AREA

Fig.  Diagram of Multi-Compartment Tire.
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Fig. 20. Illustrating Influence of Tire Design on the Design of
Bituminous Pavements for a Wheel Load of 20,000 Pounds.

Figure 20 illustrates the advantage of a two-compartment ver-
sus a single compartment tire for a wheel load of 20,000 pounds.
The contact areas for both tires are exactly the same. The sta-
bility curve in Figure 20(a) that is just tangent to the pressure
distribution curve for a single compartment tire inflated to about
200 psi., indicates that a bituminous paving mixture would be re-
quired for which c = 9 psi. and  =  developing a stability of
about 125 psi. at the edge of the contact area (due to the lateral
support of the pavement surrounding the loaded area, equation
(3)). Figure 20(b) illustrates a two-compartment tire inflated to
100 psi. in  compartment and to 400 psi. in the inner
compartment. Because of the overall flattening of the slope of
the pressure curve near the edge of the contact area, the stability
curve in Figure 20(b) indicates that a bituminous paving mixture
would be required for which c = 4.5 psi. and  =  and develop-
ing a stability of only about 62 psi. at the edge of the contact area
(due to the lateral support of the portion of the pavement surround-
ing the loaded area, equation (3)  For both Figure 20(a) and
Figure 20(b), the stability curves are based upon f + g = 1.0.
Figure 20 demonstrates, therefore, that by going from a single
compartment to a two-compartment tire, the stability of the pav-
ing mixture required to carry a wheel load of 20,000 pounds on the
contact area shown might be reduced to about one-half; e.g., from
about 125 psi. to about 62 psi.
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WHEEL LOAD z  LB. WHEEL  LB.

Fig. 21. Illustrating Influence of Tire Design on the Design of
Bituminous Pavements for a Wheel Load of 50,000 Pounds.

Figure 21 illustrates the reduction in the stability requirements
for the bituminous pavement that is possible for supporting a
wheel load of 50,000 pounds on a given contact area, when a triple
compartment tire inflated to 60 psi. in the outer compartment, to
150 psi. in the intermediate compartment, and to 300 psi. in the
inner compartment, is substituted for a single compartment tire
inflated to 200 psi. The stability curve for Figure  shows that
for the single compartment tire a bituminous pavement for which
c = 9 psi. and  =  and developing a stability of about 125 psi.
at the edge of the contact area (equation (3)) is required. On the
other hand, the stability curve for Figure  indicates that with
a triple compartment tire inflated as shown, the same total load
could be carried on the same contact area by a bituminous pave-
ment for which c = 2.9 psi. and  =  and which develops a sta-
bility of only about 41 psi. at the edge of the contact area. In this
case, by substituting a triple compartment tire for the single com-
partment tire, a reduction of about two-thirds in the stability re-
quirement for the bituminous paving mixture might be made.

Figures 18, 20, and 21 suggest that by flattening the slope of
the curve of pressure distribution near the edge of the contact
area, many existing bituminous pavements might continue to be
stable, even if the average tire pressure were greatly increased
above present values. Furthermore, by this modification in tire
design, it appears that bituminous pavements with relatively low
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c and  values could be designed and constructed that would have
quite adequate stability under average tire pressures of several
hundred psi.

Comments and Qualifications
1. The rational approach to the design of bituminous pavements

that has just been described is based entirely on stress factors,
and no direct mention has been made of the strains developed in
a pavement subjected to these stresses. Very little information
is available concerning the magnitude of the strains a bitumi-
nous pavement can withstand without damage. If either the
Hveem Stabilometer method, or the Smith triaxial method de-
scribed in The Asphalt Institute’s (10) hot-mix manual, actually
subject test specimens to failure conditions as usually claimed
for them, the strain at which the failure stress occurs cannot
be very large.

It is significant also that in both of these tests (Hveem
Stabilometer and Smith triaxial) lateral pressure is measured
by the testing equipment for very small vertical pressures on
the test specimens. This seems to indicate that the prism of
pavement immediately beneath the loaded area is able to de-
velop lateral support from the adjacent pavement under wheel
loads and tire pressures that are only a fraction of the pave-

 ultimate bearing capacity.
It is clear that some strain must be developed in the portion

of the pavement immediately under the loaded area, before it
can begin to mobilize lateral support from the adjacent pave-
ment. Also, some strain must occur before the pavement can
develop the frictional resistances between pavement and tire
and between pavement and base.. That repeated strains of some
magnitude under traffic loads are beneficial to bituminous pave-
ments rather than detrimental is indicated by the often repeated
and thoroughly substantiated statement to the effect that bitumi-
nous pavements require the kneading action of traffic to keep
them in good condition.

It is common practice in North America to measure the
strength of test specimens of bituminous mixtures at 
which is frequently quoted as the maximum pavement tempera-
ture developed under the summer sun on this continent. Con-
sequently, if the pavement is sufficiently stable to support
traffic loads when its temperature is  it has a large
safety factor at much lower temperatures as far as strength is
concerned. However, more information must be obtained before
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it can be determined what factor of safety should be selected
for both stress and strain under service conditions at the cri-
tical temperature of 

It should be noted that all present design methods, 
Field, Marshall, Hveem, and triaxial, test specimens of bitumi-
nous mixtures to failure and report stability at failure as the
strength of the mixture. If the strain corresponding to the fail-
ure stress is greater than could be permitted for a pavement
under traffic loads, any factor of safety with respect to strain
which is being unwittingly introduced into the actual design and
construction of bituminous pavements at the present time is
also effective with respect to stress, and vice versa.

Consideration of a maximum permissible strain less than
that corresponding to failure conditions would not eliminate any
of the stress items on which the rational method of design out-
lined here is based, but would have the effect of applying a fac-
tor of safety to each of them.

2. It should be carefully noted that the possible advantages of a
multi-compartment tire for simplifying pavement design for
high tire pressures are dependent upon the fact that frictional
resistance between pavement and tire and between pavement
and base appears to be an important source of pavement stabili-
ty. If due to considerations of limited permissible maximum
strain within the pavement under service conditions, it should
be necessary to apply an appreciable factor of safety to these
two frictional resistances, the advantages of a multi-compart-
ment over a single compartment tire would be reduced, and if
this factor of safety were large enough, these advantages would
disappear insofar as their being of any practical value is con-
cerned.

3.

4.

It has been assumed in the foregoing section of this paper that
the underlying base course would not fail in shear at any point
under whatever wheel load was applied to the pavement surface.
It should be pointed out, however, that if the shearing resistance
of the base course should be less than that of the asphalt sur-
face, the maximum coefficient of friction g that could be de-
veloped between asphalt pavement and base would depend upon
the shearing resistance of the base course rather than the
shearing resistance of the asphalt surface. In addition, the fac-
tor Q would refer to the shearing resistance of the base course
rather than shearing resistance of the asphalt pavement.
While it was
base  se

assumed
would not

at
fa

the beginning of this
il under the shearing

paper that the
stresses imposed
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by any load applied at the surface of the bituminous pavement,
it should be pointed out that the pressure applied by the inner-
most compartment of a multi-compartment tire may be quite
high, e.g., Figure 20(b), and that it may be the cause of very
high shearing stresses in the underlying base course. This
may also be true of a high pressure single compartment tire,
e.g., Figure 20(a). Consequently, in actual design, two criteria
of failure must be investigated, (a) the tendency of the bitumi-
nous pavement to be squeezed out between the tire and the base
course, and (b) the tendency of failure to occur along some
failure curve extending into the base, e.g., Figure 22. The first
of these two criteria of failure has been considered in this
paper, and some reference to the second has been made else-
where (11) in connection with vehicle mobility over a layer of
soft soil.

Fig. 22. Illustrating Failure by Squeezing Out the Asphalt Pave-
ment Between Tire and Base Course Versus Failure Along a
Logarithm c Spiral Curve Through Pavement and Base.

5. It is realized that the design and manufacture of the 
compartment tires referred to in this paper may present sev-
eral practical problems, which, however, should not be insur-
mountable. Nevertheless, regardless of these practical diffi-
culties, it has been one of the objectives of this paper to



380

demonstrate that the application of several well-known princi-
ples of soil mechanics to certain problems in the field of bi-
tuminous pavement design appears to point directly to the
multi-compartment tire or its equivalent as a possible useful
solution.

It has been pointed out elsewhere (11), that the multi-com-
partment tire may also provide a useful approach to the solu-
tion of certain problems in vehicle mobility and soil compaction.

6. It is worth noting that regardless of what the practicability of
the multi-compartment tire may be as a solution to the difficul-
ties of designing bituminous pavements of sufficient stability for
high tire pressures, it represents an answer to this problem
that would not even be dreamed about as long as empirical tests
such as Hubbard-Field, Hveem, Marshall, etc., are the sole ap-
proach employed for bituminous paving mixture design. As in
any other engineering field, therefore, one of the important ad-
vantages that would accrue from the development of a rational
method of design for the stability of bituminous pavements,
would be the greatly widened horizon of availability of possible
solutions for the various practical problems that have to be
solved.

BITUMINOUS MIXTURES WITH CURVED MOHR ENVELOPES

The previous section of this paper has dealt with the rational
design of bituminous paving mixtures with straight line Mohr en-
velopes. While the limited test data available seem to indicate
that straight line Mohr envelopes result from the triaxial testing
of the majority of bituminous mixtures, there are indications that
for some bituminous mixtures the triaxial data plot as curved
Mohr envelopes. If a rational method of design for bituminous
paving mixtures is to be developed, it should apply to those with
curved as well as to those with straight Mohr envelopes.

Not enough appears to be known about the triaxial testing of
bituminous mixtures to establish why straight line Mohr envelopes
are obtained for some and curved Mohr envelopes for others. It
will be assumed in this paper that either type of Mohr envelope
may occur for quite valid, although presently uncertain, fundamen-
tal reasons, and that the difference is not due to certain easily
controllable variables such as inadequate compaction during the
preparation of the test specimens, improper dimensions of the
test specimen, etc.

It should be observed in this connection that the Mohr theory



STABILITY DESIGN 381

does not require that the Mohr envelope be a straight line (12). It
leaves the shape of the Mohr envelope to be established by experi-
mental data. Consequently, the Mohr envelope may be either a
straight line or curved, depending upon the test data.

In the earlier part of this paper, in which straight line Mohr
envelopes were assumed, the further assumption was made that
the point of tangency between any Mohr circle and the Mohr en-
velope defined the angle of the plane of failure through the test
specimen, Figures 3 and 5, and that this angle of failure, 45 
from the vertical, Figure 5, was constant regardless of the mag-
nitude of the principal stresses V and L applied to the specimen
under failure conditions.

In the paper by Hennes and Wang (13) presented at last year’s
meeting, consideration was given to the nature of the Mohr dia-
gram for tests on materials that are not isotropic; that is, ma-
terials for which the shearing strength varies for different planes
through the test specimen. Their paper mentioned the earlier
studies of the strength of non-isotropic materials by Carillo and
Casagrande  and by Hank and McCarty (15). Reference should
also be made to the valuable discussions by Barber following the
papers by Hank and McCarty and by Hennes and Wang.

For the conditions of non-isotropy mentioned by Hennes and
Wang (different shearing strengths on major and minor principal
planes through the test specimen), the Mohr circles resulting
from both a hypothetical study and actual triaxial data were such
that a common straight line tangent could be drawn. However, the
point of contact between tangent and circle in this case did not
fine the angle of the plane of failure through the specimen, and
this conclusion should be kept in mind when testing specimens
which may not be isotropic, and for which the straight line tangent
may be erroneously taken to be a straight line Mohr envelope.

Nevertheless, the paper by Hennes and Wang illustrates the
fact that Mohr circles for non-isotropic materials may have a
common straight line tangent and indicates further that lack of
isotropy in itself does not necessarily result in Mohr circles hav-
ing a curved Mohr envelope. Consequently, for the balance of this
paper, it is assumed that curved Mohr envelopes result from the
triaxial testing of certain bituminous paving mixtures, and that
the curvature of the Mohr envelope is a fundamental and not ac-
cidental characteristic of these mixtures. To simplify the presen-
tation, the further simplifying assumption is made that the point
of contact between the curved Mohr envelope and any Mohr circle
defines the angle of the plane of failure through the specimen for



382

the particular conditions of stress represented by that Mohr cir-
cle.

Figure 23 illustrates the curved line relationship of the princi-
pal stress diagram, Figure 23(b), that may result from the plot-
ting of triaxial data for certain bituminous paving mixtures, and
the curved line Mohr envelope in the corresponding Mohr dia-
gram, Figure 23(c).

The first decision to be made by the design engineer, when he
finds that the triaxial data result in a curved line relationship be-
tween the principal stresses, is whether the degree of curvature
is so great that a serious error in design might occur if he neg-
lected the curvature, drew the best straight line through the data,
which in turn would result in a straight line Mohr envelope, and
then handled the design problem as outlined in the first part of
this paper, or by some similar approach. His decision in this

MINOR PRINCIPAL 

Fig. 23. Corresponding Principal Stress and Mohr Diagrams
that Result in a Curved Mohr Envelope.
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respect should depend upon the margin of error that might occur
through this neglect to handle the problem of design on the basis
of a curved line Mohr envelope. For this reason, it is necessary
for comparative purposes to have a method of design based upon
a curved Mohr envelope corresponding to that outlined in the first
part of this paper for a straight Mohr envelope. This is the prin-
cipal objective of the second part of the present paper.

Figure 24 demonstrates two important differences between
Mohr diagrams with curved Mohr envelopes, and those with
straight Mohr envelopes. As previously pointed out, it is assumed
throughout this paper that the point of tangency between a Mohr
circle, and the Mohr envelope tangent to it, defines the angle of
the plane of failure through the test specimen. The angle of the
plane of failure, frequently designated by  is equal to 45 .

MINOR PRINCIPAL

Fig. 24. An Interpretation of the Significance of Curved Mohr
Envelopes.
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For any given straight line Mohr envelope, the value of  is con-
stant for all Mohr circles to which it is tangent. Figure 24(c)
shows that for a curved Mohr envelope, on the other hand, the
value of  is different for every Mohr circle. It is smallest for
the Mohr circle representing the unconfined compressive strength
(extreme left of Figure 24(c)), and becomes gradually larger for
Mohr circles corresponding to successively greater magnitudes
of the principal stresses V and L acting on the test specimen
under incipient failure conditions (proceeding toward the right in
Figure 24(c)  This is further illustrated in Figure 24(a). This
means that for materials with curved Mohr envelopes, the angle
of the plane of failure through the test specimen is not constant,
but varies with the magnitude of the principal stresses to which
the test specimen is subjected at failure. Theoretically at least,
it appears that as the magnitude of the principal stresses is in-
creased, the angle-of the plane of failure through the test speci-
men,  approaches an asymptotic value of  and that corres-
pondingly the angle of internal friction  approaches  as an
asymptote.

The second important difference between Mohr diagrams for
straight versus curved Mohr envelopes concerns the values of co-
hesion c and angle of internal friction  When the Mohr envelope
is straight, Figure 3, the Mohr diagram shows that there is only
one value for cohesion c and angle of internal friction  for the
material, regardless of the magnitudes of the corresponding prin-
cipal stresses V and L applied to the test specimen. However, for
Mohr diagrams for which the Mohr envelope is curved, Figure
24(c) demonstrates that if the tangent to a Mohr circle at its point
of tangency with the curved Mohr envelope represents the values
of c and  to be associated with that Mohr circle, then the values
of c and  for the material vary from Mohr circle to Mohr circle
throughout the Mohr diagram, and are, therefore, dependent upon
the magnitude of the corresponding values of the principal stresses
V and L applied to the test specimen under conditions of incipient
failure. Consequently, as shown in Figure 24(c), the values of co-
hesion c and of angle of internal friction  associated with Mohr
circle (1) are  and  with Mohr circle (2) are  and  with
Mohr circle (3) are  and  etc.

Equations and  previously given, are
expressed in terms of cohesion c and angle of internal friction 
Since they were developed for a straight line Mohr envelope, the
values for c and  were constant and could be applied to any Mohr
circle throughout the Mohr diagram. If these same or similar
equations are to be utilized for the design of bituminous paving
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mixtures with curved Mohr envelopes, Figure 24(c) indicates that
some decision must be made concerning the particular values of
c and  to be used for substitution in equations 
and  or modifications of these. Since in this case the values
of c and  vary from Mohr circle to Mohr circle throughout the
Mohr diagram, it is first of all necessary to establish which Mohr
circle represents the most critical conditions of stress to which
the paving mixture will be subjected in the field.

In the first part of this paper, it was suggested that the lateral
support provided by the portion of the pavement immediately ad-
jacent to the prism of pavement just beneath the contact area
could be conservatively taken as being equal to the unconfined
compressive strength of the paving mixture. It was pointed out
that the magnitude of this lateral support could be expressed ex-
actly as the unconfined compressive strength multiplied by a fac-
tor K, where K when evaluated might turn out to be either equal
to, greater than, or less than unity. Let it be assumed that the
lateral support provided by the pavement adjacent to the loaded
prism under the contact area is equal to the unconfined compres-
sive strength of the paving mixture, which is represented by the
Mohr circle on the left in Figure 6. If it is also assumed, for the
purpose of simplification, that the frictional resistances between
pavement and tire and between pavement and base are equal to
zero, then the second Mohr circle from the left in Figure 6 repre-
sents the conditions of stress to which the prism of pavement im-
mediately beneath the loaded area is subjected under the condition
of incipient failure. It is this prism of material that must not fail
under the most critical conditions of loading in the field, and that
must develop sufficient stability or strength to support the applied
load. On the basis of these assumptions, therefore, the values of
c and  provided by the tangent to the second Mohr circle from
the left in Figure 6, at this circle’s point of tangency with the Mohr
envelope, are the c and  values to be substituted in equations 

or  to determine the stability or load support-
ing value of the paving mixture. In the case of a Mohr diagram
with a straight Mohr envelope, the values for c and  for this Mohr
circle are of course the same as those for any other Mohr circle
in the diagram.

Regardless of whether the Mohr envelope is straight or curved,
the most critical-Mohr circle is that which represents the most
critical conditions of stress for the prism of pavement just be-
neath the contact area. In Figure 26, where the Mohr envelope is
curved, let the simplifying assumption again be made that the
frictional resistances between pavement and tire and between
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Fig.  Procedure for Locating the Best Smooth Curve Through
the Points on a Principal Stress Diagram in which the Points Fall
along a Curved Rather than a Straight Line.
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Fig. 26. Illustrating Maximum Vertical Load V Supported by a
Bituminous Paving Mixture with a Curved Mohr Envelope when the
Lateral Support L Is Equal to the Unconfined Compressive Strength
of the Material.



STABILITY DESIGN 387

pavement and’base are zero, and that the lateral support of the
portion of the pavement adjacent to the prism under the loaded
area is equal to the unconfined compressive strength of the pav-
ing mixture, which is represented by the Mohr circle (1). The
conditions of stress for the prism of pavement just under the
loaded area are, therefore, represented by Mohr circle (2). Con-
sequently, in Figure 26 the tangent at the point of tangency I be-
tween Mohr circle (2) and the curved envelope provides the values
of c and  required for substitution in equation  and in slight
modifications of equations  and  for calculating
the stability or load carrying capacity V of the paving mixture.
This also applies in a similar manner to the more general case
illustrated by the tangent to Mohr circle (3) in Figure 27, where
the lateral support of the loaded area is shown to be equal to the
unconfined compressive strength of the paving mixture multiplied
by the factor K already described.

In the previous paragraph, it was stated that slight modifica-
tions must be made to equations  and (17) before
they can be employed for the design of bituminous paving mixtures
with curved Mohr envelopes. These modifications are necessary

 FOR CURVED  ENVELOPE
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Fig. 27. Illustrating Maximum Vertical Load V that Can Be
Carried by a Bituminous Paving Mixture with a Curved Mohr En-
velope when the Lateral Support KU Is Either a Fraction or a
Multiple of the Unconfined Compressive Strength of the Material
(General Case).
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because, as Figures 26, 27, and 28 clearly indicate, the values for
c and  given by the tangent to the Mohr circle at its point of
tangency with the Mohr envelope are different for the Mohr circle
on the left representing the unconfined compressive strength,
than those for the second Mohr circle from the left corresponding
to the critical conditions of stress in the prism of pavement just
under the loaded area; that is, instead of one set of c and  values
for use in equations  and  as given by a straight
line Mohr envelope, two sets of c and  values or their equivalent
must be introduced into these equations, if they are to be employed
for materials with curved Mohr envelopes. The modifications of
these equations required for this purpose will now be considered.

Equation

 +

which is the basis for equations  and  can be
employed for the design of bituminous mixtures with either
straight or curved Mohr envelopes, provided the significance of
each symbol in the terms on the right hand side is kept clearly in
mind. When it is to be employed for those with curved envelopes,
the principal point to be carefully noted is that every item in each
of these terms, except  depends upon the nature of the material

 EQUATION FOR CURVED

S z  + 

A EXPONENTIAL EQUATION FOR

s
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Fig. 28. Illustrating that a Curved Mohr Envelope Can Be Rep-
resented by Either a Parabolic or Exponential Equation.
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and the conditions of stress in the prism of pavement immediately
beneath the contact area, which are assumed for purposes of sim-
plification to be represented by the second Mohr circle from the
left in Figures 26 and 27.  on the other hand, refers to the
material and the conditions of stress within the pavement sur-
rounding the prism under the loaded area and is represented by
the Mohr circle on the left in Figure 26, where  is taken to be
equal to the unconfined compressive strength of the paving mix-
ture, U, and by the point KU in Figure 27, representing the gen-
eral case where  is considered equal to the unconfined 
pressive strength multiplied by the factor K.

It is assumed, therefore, that except for  the value of every
item or symbol in the three terms on the right hand side of equa-
tion (2) is controlled by the  of stress within the prism
of pavement just under the contact area. Consequently, the values
of c and  to be employed when utilizing modifications of equations

and (17) for the design of bituminous pavements
with curved Mohr envelopes, are given by the tangent to the sec-
ond Mohr circle from the left in Figures 26 and 27, at its point of
tangency with the curved envelope.

With these various points in mind concerning the design of bi-
tuminous mixtures with curved  envelopes, equation (10) may
be written as

+n(P +Q) (c

equation (11) may be written as

v= 2c

 tan

equation (16) may be written as

equation (17) may be written as
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1

+  +g) 1 + sin 
1  sin 

the values for c and  are given by the tangent to the second
Mohr circle from the left in Figures 26 and 27 at its point of
tangency with the curved envelope,
and the value of  is given either by the measured unconfined
compressive strength of the paving mixture; that is, by the
point U in the Mohr diagram of Figure 26, or by the unconfined
compressive strength multiplied by the factor K (the general
case), as illustrated by the point KU in Figure 
While the numerical value to be employed for  can be direct-

ly read off Mohr diagrams such as those of Figures 26 and 27, and
substituted in equations  and  it is also possible
to express in terms of  and  where  is the value of co-
hesion c for the unconfined compressive strength given by the
tangent to the Mohr circle on the left in Figures 26 or 27 at its
point of tangency with the curved envelope, and  is the value of
the angle of internal friction  given by the same tangent.

In this case,  can be expressed by the following equation:

= + sin 
 sin 

where  and  are the values of cohesion c and angle of internal
friction  given by the tangent to  circle representing the
unconfined compressive strength (circle No. 1 in Figures 26 and

 at its point of tangency with the curved Mohr envelope.
The general similarity of equation (22) for use with a curved

Mohr envelope, and of equation (4) employed for a straight Mohr
envelope is apparent. Whenever there is any advantage in so
doing, equation (22) can be substituted for  in equations 

Analysis of Mohr Diagram with a Curved Mohr Envelope
As already indicated, one of the principal problems presented

by triaxial data for a bituminous paving mixture that plot as a
curved Mohr envelope, is the determination of the values for c
and  to be substituted in equations  or  in
order that the stability V of the pavement constructed with the
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paving mixture can be calculated by these equations. A method for
this purpose, involving a number of successive steps, will be out-
lined.

Step No. 1
Plot the V and L values from the triaxial data in the form of a

principal stress diagram, Figure  A smooth curve may be
drawn through the points arbitrarily. The location of the best
smooth curve through the points can be established more accurate-
ly, if the V and L data can be plotted as a straight line on some
other graph such as log-log, semi-log, etc., by methods available
for this purpose  Figure 25(b). It happens that the data in
Figure 25(a) can be represented by the equation V =  + h, in
which m, b, and h are constants. This equation provides a straight
line on log-log paper when log (V  h) is plotted versus log L,
Figure 25(b). Points from this straight line are transferred back
to the principal stress diagram, and a smooth curve is drawn
through them, Figure 

Step No. 2
Transfer several V and L values from the smooth curve of Fig-

ure 25(a) to the corresponding Mohr diagram, Figures 26 and 27,
and draw the Mohr circles for them. Because of further reference
to be made to them, only two of these Mohr circles are retained in
Figures 26 and 27, and this procedure is better illustrated by
Figures 23 and 24. The values of V and L selected should range
from the unconfined compressive strength, L = 0, to those large
enough to somewhat exceed the probable stability of the paving
mixture. This can be roughly estimated by inspection of the re-
sulting Mohr diagrams, e.g., Figures 26, 27, or 28, or of the sta-
bility diagram, e.g., Figure 29(c). Draw a smooth curved line en-
velope tangent to the several Mohr circles, Figures 26 and 27
(better illustrated in Figure 24).

Step No. 3  Graphical Solution for c and  Values
Mark the Mohr circle representing the unconfined compressive

strength, Mohr circle (1) in Figures 26 and 27. The diameter of
this Mohr circle is equal to the intercept of the smooth curve on
the V axis of Figure 25(a). Mark, also, the Mohr circle for
the unconfined compressive strength U provides the lateral sup-
port  Mohr circle (2) in Figure 26. If the lateral support pro-
vided by the portion of the pavement adjacent to the loaded area is



equal to the unconfined compressive strength U, then Mohr circle
(2) in Figure 26 represents the conditions of stress in the prism
of pavement just under the contact area. Therefore, as previously
explained, the tangent at the point of tangency I of Mohr circle (2)
with the curved envelope provides the required values for c and 
to be substituted in the stability equations  or (21).
The position of this tangent can be estimated visually and drawn
in graphically, Figure 26. The required value of  is obtained
from the slope of this tangent since the slope is equal to tan 
while the value of c is measured by the intercept of the tangent
with the shear stress axis. The value of  for use in equations

and (21) can be read off either as point L = U in
Figure 26, or as the intercept of the curve with the V axis in
Figure 25(a) z

If the lateral support of the portion of the pavement adjacent to
the loaded area is considered to be equal to K times the uncon-
fined compressive strength U, where K may be either greater than
or less than unity, then Mohr circle (3) in Figure 27 represents
the conditions of stress in the prism of pavement just under the
contact area (K is illustrated as being greater than unity in Figure
27). In this case, the required values for c and  are again given
by the tangent at the point of tangency F of this second Mohr cir-
cle with the curved envelope, and can be substituted in equations

or (21). The value of  to be used in these equa-
tions is illustrated by the point L = KU in Figure 27.

The above procedure, therefore, outlines a simple graphical
method for obtaining the values of c and  to be used in equations

or (U), for determining the stability of bituminous
paving mixtures with curved Mohr envelopes.

 No. 4  Mathematical Solution for c and  Values
From visual examination of Figures 26 and 27, it is clear that

due to the considerable distance over  the curved envelope
and Mohr circle circumference are very near to each other, the
exact point of tangency between the two, I in Figure 26, and F in
Figure 27, is not easilv determined by inspection, and some error
could also be made in its slope when the tangent is drawn. The
graphical method for determining the values of c and  described
under Step No. 3 is, therefore, subject to these same errors, plus
any additional errors made in measuring the slope of the tangent
and its intercept with the shear stress axis. To whatever extent
the effect of the magnitude of these errors might be serious when
cumulative, it is worth while to have a rigorous mathematical
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method for establishing the exact point of tangency between the
curved envelope and any Mohr circle, and exact values for c and
 for substitution in equations  and (21). The bal-

ance of this section will be devoted to the outline of a rigorous
mathematical method for this purpose, which is presented in de-
tail in the appendix to this paper.

The first step in this development consists of obtaining a rela-
tively simple mathematical equation for the smooth curved 
envelope that was drawn under Step No. 2 above z Two simple
types of equations available for this purpose are power functions
and exponential functions. An equation of the power function type
that gives a parabolic curve is s = m (n  Figures 26, 27, and
28, where m, b, and r are constants, while s = shearing stress
and n = normal stress. The exponential function type is illustrated
by the equation s + d = m log (n + a), Figure 28, where d, m, and a
are constants, while s = shearing stress and n  normal stress.

Each of these two types of equations contains three unknown
constants. In each case, these constants can be evaluated by solv-
ing the simultaneous equations that result from substitution of the
s and n values for three well-distributed points, e.g., X, Y, and Z
in Figure 26, on the smooth curve that is to be represented by a
mathematical equation. As indicated by Figure 26, the three
points X, Y, and Z should be well distributed over the range from
slightly more than the unconfined compressive strength, point X,
to somewhat beyond the probable stability of the paving mixture,
point Z. In Figure 26, the s and n coordinate values are shown
for each of the three points X, Y, and Z, and they should be read
as precisely as possible from the smooth curve.

When the constants in both the power and exponential equations
have been evaluated in this manner, Figure 28 demonstrates that
either type of equation fits the original smoothly-drawn curved
Mohr envelope, on which the three points lie, equally well, over
the range of stability concerned. At either end of this range, it is
seen that the curves provided by the two types of equation begin to
diverge .

Since both the power type and exponential type of function ap-
pear to be equally capable of providing a satisfactory mathemati-
cal equation for a curved Mohr envelope over the range of stabili-
ties to be considered in bituminous pavement design, the selection
of one or the other type of function for this purpose may be a mat-
ter of personal preference. In this paper, the power function type
that provides a parabolic equation has been chosen.

The various steps in the mathematical treatment involved when
the parabolic equation is employed in this manner are listed in the
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appendix. Values for L, V, s, n, c, and  in the form of relatively
simple equations derived from the use of this parabolic equation
are also given in the appendix, for any Mohr circle.

Step No. 5  Mathematical Solution for c and  Values
By means of the detailed mathematical treatment given to this

problem in the appendix, the following equations are derived for
c and 

 =  mr (n, 

where
m, b, and r = constants in the parabolic equation, Figures 26

and 27, and
 and  = the normal stress and shear stress, respectively,

at the point of tangency between the curved Mohr
envelope and the Mohr circle representing the
conditions of stress in the prism of pavement just
below the contact area. This point of tangency is
at I in Figure 26, where the lateral support is
considered to be equal to the unconfined compres-
sive strength of the paving mixture U, and at F in
Figure 27, where the lateral support is considered
to be equal to the unconfined compressive strength
U multiplied by a factor K.

For the stress conditions represented by Mohr circle (2) in
Figure 26, this rigorous mathematical approach indicates the fol-
lowing values for c and 

c = 16.4 psi.
 = 

while for the stress conditions represented by Mohr circle (3) in
Figure 27, the values for c and  are:

c = 17.5 psi.
 = 

In each case, these are the values of c and  required for sub-
stitution in equations  and  for determining the
stability V of a bituminous paving mixture with the curved Mohr
envelope illustrated in Figures 26 and 27.
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COMPARISON OF STABILITY VALUES, CURVED VERSUS
STRAIGHT MOHR ENVELOPES

From the previous section of this paper, and from the appendix,
it is apparent that determining the stability of a paving mixture
with a curved Mohr envelope involves some time and trouble, par-
ticularly if the method of rigorous mathematical calculation is em-
ployed. The question arises of whether the margin of error result-
ing when a straight line Mohr envelope is assumed to represent
the triaxial data, instead of the curved Mohr envelope that actually
represents these data, justifies the greater effort that must be
made when the stability determination is based on a curved Mohr
envelope.

In the principal stress diagram of Figure 25(a), the curved line
relationship between the V and L values is quite evident, although
the degree of curvature is not pronounced. This principal stress
diagram is reproduced in Figure 29(a), together with the best
curved line through the points, but in addition, the best straight
line established by the method of least squares is drawn through
the data. Corresponding V and L values from the best straight
line through the points of Figure 29(a) provide the straight line
Mohr envelope of Figure 29(b), while V and L values from the best
curved line in Figure 29(a) give the curved Mohr envelope of
Figure 29(b).

Assuming in each case that the lateral support provided by the
portion of the pavement just outside of the contact area is equal to
the unconfined compressive strength, two Mohr circles (solid line)
are drawn tangent to the curved Mohr envelope as shown, and two
other Mohr circles (dashed line) are drawn tangent to the straight
Mohr envelope. On the basis of the previous subject matter of this
paper, if the frictional resistance between pavement and tire and
between pavement and base were both equal to zero, Figure 29(b)
shows that  = 109.2 psi. is the ultimate strength of the pavement
if it is represented by the curved Mohr envelope, while  = 118
psi. is the ultimate strength of the pavement if it is represented by
the straight line Mohr envelope. Under these conditions, the as-
sumption of a straight line Mohr envelope would lead to a stability
evaluation about 8 per cent too high.

From either Figure 26, or the example of calculations given in
the appendix, the values for c and  for the tangent to the curved
envelope at its point of tangency I with the second Mohr circle
from the left (solid line) in Figure 29(b) are c = 16.4 psi. and
 =  while for the straight line Mohr envelope in Figure

29(b) they are c = 13.4 psi. and  =  that is, as would be
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Fig.  Comparison of Stability Values Given by the Best
Curved Line Through V and L Values Plotted on a Principal
Stress Diagram (Resulting in a Curved Mohr Envelope) Versus
Those Provided by the Best Straight Line Through the Same Points
(Resulting in a Straight Mohr Envelope).

expected, the c and  values provided by the straight line and
curved line Mohr envelopes of Figure 29(b) are materially dif-

On the basis of these c and  values, the tire pressure distri-
bution curve shown in Figure 29(c), and letting f + g = 0.8 in each
case, stability curves can be drawn, Figure 29(c), assuming in
one case that the stability of the paving mixture is represented by
a straight Mohr envelope, and in the other case by a curved Mohr
envelope. In the case of the straight Mohr envelope, equations
(11) or (17) can be employed for determining the location of the
corresponding stability curve, while for the curved Mohr envelope,
the location of the required stability curve is given by equations
(19) or  The stability curve for the straight line Mohr enve-
lope becomes tangent to the tire pressure curve at a point two
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inches from the edge of the contact area, and at a pressure or sta-
bility value of about 262 psi. At this same distance from the edge
of the contact area, the stability value given by the stability curve
for the curved Mohr envelope is about 242 psi.; that is, the sta-
bility of the latter is about 20 psi. less than the pressure applied
by the tire at this point. Therefore, the difference between these
two stability values is also about 8 percent. Consequently, on the
basis of the paving mixture represented by Figure 29, assuming a
straight line Mohr envelope located by the method of least squares,
for a bituminous mixture for which the Mohr envelope is actually
curve, could result in underdesign to the extent of about 8 percent.

From Figures 23(c), 24(c), 26, 27, and 28, it will be observed
that the sharpest curvature of a curved Mohr envelope occurs at
the left hand side of the Mohr diagram, and that the degree of
curvature becomes progressively less as the envelope is extended
to the right . The curvature of the best smooth curve in the prin-
cipal stress diagram of Figure 29(a), and of the curved Mohr en-
velope in Figure 29(b) is not large, and a considerable difference
in stability values obtained by treating the triaxial data on the
basis of either a straight or curved Mohr envelope might not,
therefore, be expected. Consequently, other examples in which
much more curvature has been introduced into the smooth curve
in the principal stress diagram, and into the corresponding curved
Mohr envelope, have been investigated in a similar manner.
Nevertheless, if the straight line Mohr envelope is located by the
method of least squares, the maximum difference in stability that
has been found by assuming a straight Mohr envelope for a bitumi-
nous mixture for which the Mohr envelope is actually curved, is
less than 20 percent, the stability value for the straight Mohr en-
velope always being the larger. For the design of bituminous mix-
tures with curved Mohr envelopes, therefore, the assumption of a
straight Mohr envelope located by the method of least squares will
lead to stability underdesign to an extent that should not exceed
about 20 percent as a maximum value, and may ordinarily be not
more than about 10 percent.

DISCUSSION
1. In the section of this paper dealing with the design of bituminous

paving mixtures with curved Mohr envelopes, the assumption is
made that the critical  circle is the one for which the en-
tire lateral support L is provided by the portion of the pavement
immediately adjacent to the loaded area, and is equal to either
the unconfined compressive strength U of the paving mixture,
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Mohr circle (2) in Figure 26, or to U multiplied by a factor K,
Mohr circle (3) in Figure 27. It is believed that this assump-
tion should lead to values for c and  provided by the tangent
to the Mohr envelope at its point of tangency with the critical
Mohr circle, that enable the stability curve, Figure 29(c), to be
drawn with sufficient accuracy for purposes of pavement design.

Nevertheless, it should be observed that a critical Mohr cir-
cle, for which the lateral support  is provided by the pave-
ment immediately adjacent to the loaded area, represents the
stability of an element of pavement only at the edge of the con-
tact area. For elements within the pavement at points between
the edge and the centre of the contact area, the total lateral
support L  +  where  is the lateral support provided
by the pavement just outside the loaded area, and  is the
equivalent lateral support due to the frictional resistances be-
tween pavement and tire and between pavement and base acting
over the distance between the edge of the contact area and the
position of the element under the contact area. To the extent
that permissible strain within the pavement permits the
equivalent lateral support  to be developed under traffic, it
can provide an additional source of lateral support. The effect
of the development of equivalent lateral support  would be to
displace the position of the critical Mohr circles (2) and (3) in
Figures 26 and 27 farther to the right. The length of the shift
to the right through which the critical Mohr circle would be
moved in either case would be governed by the distance from
the edge of the contact area to the point where the stability
curve is just tangent to the tire pressure curve, Figures 2, 13,
14, 29(c), etc. For the conditions illustrated by Figure 29(c),
at this point of tangency the developed stability V required is
about 250 psi. On this basis, the critical Mohr circle in Fig-
ures 26 and 27 would be moved to the right until the value of V,
the major principal stress, was about 250 psi. From Figures
26 and 27, it is apparent that at the point of tangency of such a
critical Mohr circle with the curved Mohr envelope, the angle
of internal friction  given by the tangent would be somewhat
less, and cohesion c would be somewhat of an element of pave-
ment only at the edge of the contact area. For elements within
the pavement at points between the edge and the centre of the
contact area, the total lateral support L =  +  where 
is the lateral support provided by the pavement just outside the
loaded area, and  is the equivalent lateral support due to the
frictional resistances between pavement and tire and between
pavement and base acting over the distance between the edge of
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the contact area and the position of the element under the con-
tact area. To the extent that permissible strain within the pave-
ment permits the equivalent lateral support  to be developed
under traffic, it can provide an additional source of lateral sup-
port. The effect of the development of equivalent lateral sup-
port  would be to displace the position of the critical Mohr
circles (2) and (3) in Figures 26 and 27 farther to the right.
The length of the shift to the right through which the critical
Mohr circle would be moved in either case would be governed
by the distance from the edge of the contact area to the point
where the stability curve is just tangent to the tire pressure
curve, Figures 2, 13, 14, 29(c), etc. For the conditions illus-
trated by Figure 29(c), at this point of tangency the developed
stability V required is about 250 psi. On this basis, the criti-
cal Mohr circle in Figures 26 and 2’7 would be moved to the
right until the value of V, the major principal stress, was about
250 psi. From Figures 26 and 27, it is apparent that at the
point of tangency of such a critical Mohr circle with the curved
Mohr envelope, the angle of internal friction  given by the
tangent would be somewhat less, and cohesion c would be some-
what larger, than for Mohr circles (2) and (3). On the other
hand, the change in curvature of the curved Mohr envelope over
this additional distance is relatively small, and the change in c
and  therefore, is likely to be small enough that it might not,
even in an extreme case of a Mohr envelope of considerable
curvature, shift the position of the stability curve, Figure 29(c),
sufficiently to have any practical effect on the design require-
ments.

It might be added that not enough is yet known about the
magnitudes of either or  that can be mobilized within a
pavement to support an applied load without developing suffi-
cient strain to damage the pavement. For this reason, Figures
26, 27, 28, and 29 would appear  not unsuitable for illus-
trating the principles of design that bituminous mixtures with
curved Mohr envelopes involve. This is particularly true of
Figure 27, since in a broad sense, Mohr circle  for which
the lateral support L is equal to the unconfined compressive
strength U multiplied by a factor  could be considered to in-
clude every item in the two variables  and  and from
other sources, if any, that contributes to the overall effective
lateral support L for any element of pavement for which the
stability under load is desired.

2. Expressing the of the curved Mohr envelope required
for pavement design in the form of a  equation,
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and carrying through the calculations to provide the values for
c and  given by the tangent at the point of tangency between the
critical Mohr circle and the curved Mohr envelope requires
some time. It is believed that for ordinary pavement design,
sufficient accuracy would be obtained by a graphical solution.
This requires that the best smooth curve be drawn tangent to
the Mohr circles, and that a tangent be drawn by visual inspec-
tion at the point of tangency between the curved Mohr envelope
and the critical Mohr circle. The angle of internal friction 
and cohesion c given by this tangent can be readily measured.

Alternatively, as developed in the previous section, it seems
not unlikely that a straight line Mohr envelope, located by the
method of least squares on the Mohr diagram for a bituminous
mixture with a curved Mohr envelope, may provide c and 
values that are close enough for practical pavement design.
While this method seems to always lead to some underdesign,
it appears that the degree of underdesign would not exceed 20
percent in an extreme case, and might not ordinarily exceed 10
percent in the great majority of cases.

3. While the subject matter of this paper has been presented quan-
titatively, it is clearly realized that other theoretical equations
could be employed or developed that would provide somewhat
different quantitative values than those that are shown in a num-
ber of diagrams. It should be emphasized in this connection,
however, that the primary purpose of the paper has been to il-
lustrate the principles by means of which stability problems
presented by bituminous paving mixtures with curved Mohr en-
velopes might be solved, rather than to cover all the mathe-
matical equations that might be employed to provide the quanti-
tative answers required.

4. Finally, until there has been an opportunity to build up informa-
tion on the field performance of bituminous mixtures designed
by the rational method based upon the triaxial test, it would be
prudent to employ a generous safety factor. In this connection,
it should be emphasized that the values for stability V provided
by any of the equations contained in the latter part of this paper
represent the ultimate resistance of the pavement to being
squeezed out between the tire and the base course. The strain
that occurs within the pavement when this ultimate strength is
developed may be large enough to cause permanent damage to
the pavement. For this reason, a safety factor may have to be

 to the ultimate strength V provided by equations 
(11),  or  in order to keep the
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strain developed by the pavement, when under load, small
enough to avoid permanent pavement injury. It must also be
recognized that until the required experimental work can be
undertaken in both the laboratory and the field, not enough is
known about the actual shape of the tire pressure distribution
curve across the contact area for different tires, or about the
magnitude of such variables as K, f, g, P, Q, n, t, etc., to make
adequate use of them for the design of bituminous pavements at
the present time. It is for these reasons that a generous safety
factor is suggested when the above equations provided by the
rational method are employed.

Nevertheless, if particular care is taken to obtain a strong
bond between pavement and base, if design is based upon the
stationary load condition, and for the maximum pressure ap-
plied to the contact area, and if it is assumed that the factor
K = 1, it is believed that equation (3) or the design curves of
Figure 7 provide a conservative basis for design, which is il-
lustrated by stability curve number (2) in Figure 2. It is be-
lieved that no safety factor is required in this case, since an
ample factor of safety seems to be provided by the neglect of
such variables as f, g, P, Q, n, t, etc., when design is based
upon equation (3) or Figure 7. For bituminous mixtures with
curved Mohr envelopes, the required values for c and  to be
employed with equation (3) or Figure 7 can apparently be ob-
tained with sufficient accuracy from the best straight line Mohr
envelope through the Mohr diagram, located by the method of
least squares.

Since the use of equation (3) and Figure 7 provides an un-
known safety factor that may be of considerable magnitude, it
is believed that it would be very much worth while if such
variables as K, f, g, P, Q, n, t, etc  could be evaluated experi-
mentally as soon as possible. This would enable equations such
as (IO), (11),  and (21) and a controlled
safety factor to be employed for bituminous pavement design.

SUMMARY
(1) A rational approach to the design of bituminous paving mixtures

with straight line Mohr envelopes described in an earlier paper
is reviewed.

(2) All present methods for the design of bituminous pavements in-
dicate that to support the much higher tire pressures of jet air-
craft, a bituminous pavement of greater stability must be pro-
vided.
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(3) As an alternative solution to this problem of pavement design
for high tire pressures, the rational approach to bituminous
pavement design suggests that bituminous pavements of rela-
tively low stability might be stable under these higher average
tire pressures, if a multiple-compartment tire were used with
the highest inflation pressure in the innermost compartment,
and the lowest pressure in the outermost compartment.

(4) A rational approach to the design of bituminous paving mixtures
with curved Mohr envelopes is described. Both a graphical so-
lution for this purpose and a rigorous mathematical method are
given.

(5) It is shown that for bituminous mixtures with curved Mohr en-
velopes, straight line Mohr envelopes drawn through the Mohr
diagram, and located by the method of least squares, provide
stability values that may be from 10 to 20 percent too high, but
may nevertheless be sufficiently accurate for practical pave-
ment design at the present time.
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APPENDIX

ANALYSIS OF MOHR DIAGRAMS WITH CURVED
MOHR ENVELOPES

In the Mohr diagrams of Figures 26 and 27, let the curved Mohr
envelope be represented by the parabolic equation

s= m (n (25)

and r are constants,
n and s are nor  stress and shear stress, respectively.
In Figures 26 and 27, the equation for Mohr circle (1) repre-

senting the unconfined compressive strength is

which, upon rearranging and simplifying, becomes

where
U = unconfined compressive strength
n and s = normal and shear stress, respectively, on any plane

through the test specimen subjected to the unconfined
compressive strength U.

In Figure 26, the equation for Mohr circle  for which the
lateral support  is equal to the unconfined compressive strength
U, is

[ n -

which, upon rearranging and simplifying, becomes
n  U) 

the major principal stress when the lateral support  is
equal to the unconfined compressive strength U,

n and s = normal and shear stresses on any plane through the
specimen when the principal stresses are  and U.

In Figure 27, the equation for any Mohr circle  for which
the principal stresses are  and  where  = KU, is
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which, upon rearranging and simplifying, becomes
 = n  +

where
 and = major and minor principal stresses, and  = KU,
n and s = normal and shear stresses on any plane through

the specimen when the principal stresses are 
and

In Figures 26 and 27, the slope of the tangent at any point on the
curved Mohr envelope is given by the first derivative of equation
(25)

ds mr (n 

In Figures 26 and 27, the slope of the tangent at any point on the
circumference of Mohr circle (1) is given by the first derivative
of equation (26)

 U  2n

In Figure 26, the slope of the tangent at any point on the circum-
ference of Mohr circle (2) is given by the first derivative of equa-
tion

ds  + U  2n
 2s

In Figure 27, the slope of the tangent at any point on the circum-
ference of Mohr circle (3) is given by the first derivative of equa-
tion

ds  +  2n
 2s

Analysis of Mohr Circle (1) Representing Unconfined Compression,
Figures 26 and 27

For Mohr circle (1) in Figures 26 and 27, values are required
for U, the unconfined compressive strength, for  and  the
normal and shear stress coordinates for the point of tangency G
between the curved Mohr envelope and Mohr circle (1), and for

 and  given by the tangent to the curved Mohr envelope at G.
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At the point of tangency, G, between the curved Mohr envelope
and Mohr circle (1), the equation for the curved Mohr envelope is

= m (25a)
and the equation for Mohr circle (1) is

=  U 
Squaring equation  equating it to equation  and re-

arranging, gives

U=
 +

At the point of tangency, G, the slopes of the tangents to Mohr
circle (1) and to the curved Mohr envelope are equal; that is,
equating equations (29) and  and introducing appropriate
scrips, gives

mr u

which, upon substituting the right hand side of equation (25a) for
 simplifying, and rearranging, becomes

U =  + 
Equating equations (33) and  and simplifying, gives

 = 0 (35)
In equation  m, b, and r are the constants in equation 

which represents the curved Mohr envelope, and values for them
are given in Figures 26 and 27. The method for evaluating each
of the three constants m, b, and r is illustrated in the example of
calculations given at the end of this section of the appendix.
Therefore, the value for  required to satisfy equation (35) can
be quickly determined from a graphical plot of equation (35) ver-
sus trial values for  Figure 

By substituting the value for  found in this manner in equa-
tions (33) or  the value for U can be calculated, since the
values for m, b, and r have been established.

In addition,. since the values for  m, b, and r have been as-
certained, values for and  can be calculated from the
following equations

 m (25a)
 =  mr (n, 
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Because it would add to the detail of the diagrams, the tangent
to Mohr circle (1) at its point of tangency with the curved Mohr
envelope is not shown in either Figure 26 or 27.

Analysis of Mohr Circle  Figure 26
For Mohr circle (2) in Figure 26, for which the lateral pres-

sure  is equal to the unconfined compressive strength U, values
are required for  the major principal stress, for  and  the
normal and shear stress coordinates for the point of tangency, I,
between the curved Mohr envelope  circle  and for

 and  given by the tangent to the curved Mohr envelope at I.
At the point of tangency, I, the equations for the curved Mohr

envelope and for Mohr circle (2) are
= m (25b)

= + u)

Squaring equation  equating it to equation  and re-
arranging, gives

 + (38)

At the point of tangency, I, the slopes of the tangents to the
curved envelope and Mohr circle (2) are equal. Therefore, equat-
ing equations (29) and  introducing the appropriate subscripts,
and rearranging, (remembering that  m  ), gives

=  U + 
Equating equations (38) and  and simplifying, gives

 U) +  0 (40).
In equation  values for the constants m, b, and r from equa-

tion (25) for the curved Mohr envelope are given in Figures 26 and
27 (see the example of calculations at end of this appendix for a
method for their evaluation), the value for U has already been de-
termined for Mohr circle (1), and  is, therefore, the only un-
known. The value for  required to satisfy equation (40) can be
quickly determined from a graphical plot equation (40) versus trial
values for  Figure 

By substituting the value for  found by this means in equations
(38) or  the value of  can be calculated, since the values for
m, b, r, U, and  have been established.
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In addition, since the values for  m, b, and r have been as-

certained, values for  and  can be calculated from the fol-
lowing equations.

= m (25b)
 = tan-l mr 

Analysis of Mohr Circle  Figure 27
For any Mohr circle  Figure 27, for which the lateral pres-

sure  is equal to KU, where KU is the unconfined compressive
strength U multiplied by a specified factor K, values are required
for  the major principal stress, for  and  the normal and
shear stress coordinates for the point of tangency, F, between the
curved Mohr envelope and Mohr circle  and for  and  given
by the tangent to the curved Mohr envelope at F.

At the point of tangency, F, the equations for the curved Mohr
envelope and for Mohr circle (3) are

(25c)

Squaring equation  equating it to equation  and rear-
ranging, gives

At the point of tangency, F, the slopes of the tangents to the
curved envelope and Mohr circle (3) are equal. Therefore, equat-
ing equations (29) and  introducing the appropriate subscripts,
and rearranging (remembering that  = m  gives

=  + (44)
Equating equations (43) and  and simplifying, gives

 -  +  -

In equation  values for the constants m, b, and r, from
equation (25) for the curved Mohr envelope, are given in Figures
26 and 27 (see example of calculations at the end of this appendix
for a method for their evaluation), the value of  = KU is known,
since the value of  to be used is specified, and the value of U has
already been determined for Mohr circle (1), and  is, therefore,
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the only unknown. The value for  required to satisfy equation
(45) can be quickly determined from a graphical plot of equation
(45) versus trial values for  similar to Figure

By substituting the value for  found by this means in equations
(43) or  the value for  can be calculated, since the values
for m, b, r,  and  have been established. It will be remem-
bered that = KU, where the value of K is specified, and the
value of U, the unconfined compressive strength, has already been
determined for Mohr circle (1).

In addition, since the values for  m, b, and r have been as-
certained, values for s,,  and  can be calculated from the fol-
lowing equations.

 = (25c)
 =  mr (46)
 = 

AN EXAMPLE OF CALCULATIONS
To Evaluate the Constants m, b, and r in the Parabolic Equation
Representing the Curved  Envelope

It will be assumed that points representing the V and L values
provided by a triaxial test on a bituminous paving mixture with a
curved Mohr envelope have been plotted on a principal stress
diagram, and that the best smooth curve has been drawn through
them, e.g., Figure 25(a). Using V and L values from well-dis-
tributed points on this  describe a number of Mohr circles,
e.g., Figures 23(c), 24(c), 26, and 27, and draw a smooth curve
tangent to the Mohr circles. Select three points, X, Y, and  on
this curved Mohr envelope, Figure 26, of such spacing that point 
is slightly to the right of the point of tangency, G, of the curved
Mohr envelope with Mohr circle (1) representing the unconfined
compressive strength, point  is somewhat to the right of tie
point of tangency of the curved envelope with the Mohr circle con-
sidered to represent the stability of the pavement; that is, some-
what  right of I in Figure 26, and of F in Figure 27; while
point Y is approximately half-way between them.

As precisely as they can be read from the curved Mohr enve-
lope of Figure 26, the normal stress and shear stress (n and s)
coordinates for points X, Y, and Z are as follows:

n S

X
Y 40 28.9
Z 80 42.0



410

The parabolic equation assumed to represent the curved Mohr
envelope over the range of stress under consideration is:

S (25)
Equation (25) contains three constants, m, b, and r, and the two

variables normal stress n and shear stress s. The three constants
m, b, and r can be evaluated by substituting the n and s values for
the three points X, Y, and Z in equation (25) to form three equa-
tions that can be solved simultaneously. These three equations
are:

15.5 = m (10 a
28.9 = m (40 
42.0 = m (80 C

Combining equations (a) and (b), and equations (b) and (c),
gives

15.5 (40 = 28.9 (10 
and

28.9 (80 = 42.0 (40 e
Substitute trial values for b in equation (d) and calculate cor-

responding values for r . Substitute the values for b and r so ob-
tained in equation (e), and plot the left hand side of equation (e)
minus the right hand side against the trial values for b, Figure

 When this difference is zero, the correct value for b has
been obtained. Figure 30(a) indicates that the correct value for
b 65

When’ the correct value for b, -6.5, is substituted in equation
(d), it is found that r = 0.6. These values for b and r are also
found to satisfy equation (e), which serves as a check.

When the values b = -6.5 and r = 0.6 are substituted in equa-
tions (a), (b), and (c), it is foundthat the value for m = 2.89.

Therefore, the required values for the constants m, b, and r in
equation (25) are

m = 2.89
b= -6.5
r = 0.6

Analysis of Mohr Circle (1), Unconfined Compression, Figures 26
and 27

The value for  at the point of tangency, G, between the curved
Mohr envelope and Mohr circle  Figure 26, where  represents
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the normal stress on the plane of failure for the unconfined com-
pressive strength condition, can be calculated from equation 

 = 0 (35)
Values for the constants m, b, and r have already been deter-

mined, and the value of  can be found graphically by plotting
equation (35) against trial values for  until this equation is satis-
fied. Figure 30(b) illustrates this method, and indicates that the
required value for  = 8.32 psi.

By substituting the values determined for m, b, r, and  in
equations (33) or  the value of U, the unconfined compressive
strength, Figure 26 and 27, can be calculated.

U=  -  +

 SOLUTION FOR EVALUATING CONSTANTS IN
FOR CURVED  ENVELOPE

 FOR EV ALUAT ING n,  
THE PLANE OF FAILURE FOR THE OF

 VALUES OF  STRESSES V AND L, WHEN L IS
TO THE  COMPRESSIVE STRENGTH
 I I  I  I

‘REQUIRED VALUE FOR  9

6 0 6 4 6 8 6 6

Fig. 30. Illustrating Graphical Methods for Simplifying the So-
lution of Three Key Equations Associated with Curved Mohr En-
velopes.



412

from which
U = 33.83 psi.

From the values for m, b, r, and  that have been established,
values for and  can be easily calculated by means of
equations  and (37).

from which
= m (25a)

= 14.6 psi.

from which
 =  mr 

 = 

from which
 =

C = 9.7 psi.
Consequently, for Mohr circle (1) in Figures 26 and 27,

U = 33.8 psi.
= 8.3 psi.
= 14.6 psi.

 = 9.7 psi.
 = 

Analysis of  Circle  Figure 26
The value for  at the point of  I between the curved

 envelope and Mohr circle  Figure 26, where  repre-
sents the normal stress on the plane of failure when the 
stresses are  and = U, can be calculated from equation (40).

 U)  = (40)

Values for the  b, and r, and for the unconfined
compressive strength U have already been determined, and the
value for  can be found graphically by plotting equation (40)
against trial values for  until this equation is satisfied. Figure.

 this method and indicates that the required value
for  = 59.9 psi.

By substituting the values determined for m, b, r, U, and  in
equations (38) or  the value of  the major principal stress,
Figure 26, can be calculated.
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from which
=  U + 

= 109.2 psi.
From the values for m, b, r, and  that have been established,

values for  and  can be easily calculated by means of
equations  and (42).

from which
 = 35.8 psi.

(25b)

from which
=  mr 

 = 

from which
= 66.4 psi.

Consequently, for Mohr circle (2) in Figure 26,
U = 33.8 psi.

 psi.
 = 59.9 psi.
 = 35.8 psi.
 = 16.4 psi.
 = 

Analysis of Mohr Circle  Figure 27, General Case
The value for  at the point of tangency F between the curved

Mohr envelope and Mohr circle  Figure 27, where  repre-
sents the normal stress on the plane of failure when the principal
stresses are  and = KU, where K = 1.2 as an arbitrarily
specified value in this example, and U is the unconfined compres-
sive strength, can be calculated from equation (45).

Values for the constants m, b, and r have already been deter-
mined,  = KU, both K and U being known, and the value for 
can be found graphically by plotting equation (45) against trial
values for  until this equation is satisfied. The method is illus-
trated in Figure  which was employed to evaluate and a
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similar graph indicates that the required value for  = 69  psi.
By substituting the values determined for m, b, r, and  in

equations (43) or  and remembering that  = KU, the value
of  the major principal stress, Figure 27, can be calculated.

from which
=  + (44)

= 121.4 psi.
From the values for m, b, r, and  that have been established,

values for s,,  and  can be easily calculated by means of
equations  and (47).

= m 
from which

 = 38.7 psi.

from which
= tan-l mr 

 = 

from which
 = 17.5 psi.

Consequently, for Mohr circle (3) in Figure 27,

 KU = (1.2) (33.8) = 40.6 psi.
121.4 psi.

 = 69.1 psi;
 = 38.7 psi.
 = 17.5 psi.
 = 

D is cuss i on

(46)

PROF. B. A. VALLERGA: Dr.  how did you arrive at
the shape of your curved envelope?

MR. McLEOD: The shape of the curved Mohr envelope would
result from plotting the triaxial data from certain bituminous
paving mixtures.

PROF. VALLERGA: That is all right; by tests. The second
question then is to what do you attribute the curvature?
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MR. McLEOD: We have not been too much concerned with the
cause of the curved Mohr envelope. We have assumed that a
curved Mohr envelope is a fundamental characteristic of certain
bituminous paving mixtures, and not an accidental effect due to
improper dimensions of the test specimens, etc.

PROF. VALLERGA: I think we should be concerned. I think
we should know why the envelope curves like that because, among
other things, it would lead to a third question that I have. It has
been suggested that the curvature is due to structural effects like
interlocking and things of that sort. If that were the case, would
that not lead you to suspect that the limiting curve would be a
straight line through the origin? Do you understand what I am
trying to say?

MR. McLEOD: There is one point I would like to make in con-
nection with this discussion. Professor Vallerga has mentioned
structural effects. The ratio of height to diameter of the test
specimen could be taken as one of these. This paper has been
based upon the assumption that dimensional and all other acci-
dental or fortuitous effects are eliminated as a cause of the curva-
ture of the Mohr envelope. It has been assumed, for example, that
the test specimens are tall enough that the normal plane of failure
will not intersect either end of the specimen. This would rule out
test specimens of low height to diameter ratio, such as those em-
ployed for Marshall or Hveem Stabilometer tests, for which curved
Mohr envelopes seem to result.

PROF. VALLERGA: In our triaxial work at the University of
California, we use specimens of a height-diameter ratio such that
the inhibiting effects of the upper and lower loaded boundaries of
the sample are minimized. However, still we find for a crushed
material or rock with large sized particles that we are not able to
develop a straight line Mohr envelope that will go through the
origin, and that we always have an intercept on the ordinate. Also
we suspect that the envelope should be curved for reasons I will
not go into here. Therefore, I have no particular argument with
the curvature of your envelopes, because I think it can be explained
by the relative size of the particles compared to the size of the
container z It is because of this that a limiting curve for materials
of successively smaller grain sizes would be a straight line
through the origin.

MR. McLEOD: In view of the considerable published data for
triaxial tests on bituminous paving mixtures, I find it difficult to
believe that the Mohr envelopes for properly designed bituminous
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mixtures would fail to show an intercept on the ordinate axis.
Existing data do not verify the suggestion that Mohr envelopes for
these mixtures pass through the origin. They invariably show a
positive value for cohesion c.

PROF. VALLERGA: Let’s eliminate the asphalt and talk about
aggregates z

MR. McLEOD: This paper is concerned with the rational de-
sign of bituminous paving mixtures and we should probably stay
with that subject.

PROF. VALLERGA: Then let us load a bituminous mix such
that the viscosity and cohesion effects of the asphalt are zero.
This bituminous mixture with zero viscosity effects would then
behave like the aggregate without asphalt added.

MR. McLEOD: I very much doubt that any properly designed
dense-graded bituminous paving mixture can be tested triaxially
in such manner that its cohesion  becomes zero; or more pre-
cisely, that its cohesion becomes zero when the normal stress on
the plane of failure is zero. It is a matter of common observation
that the stability of moist sand on-any sandy beach is superior to
that of the same sand when dry due merely to the binding effect of
the cohesion provided by the moisture films around the sand
grains, and it is my understanding that when moist (not saturated)
sands are tested triaxially, their Mohr envelopes show an inter-
cept on the ordinate axis that we call cohesion c.

PROF. VALLERGA: I disagree. All our work at the Univer-
sity shows that for fine-grained sands tested triaxially at very low
pressures, the Mohr envelope passes through the origin, provided
effective pressures are plotted. For work carefully done, we can
get the envelope through the origin in all cases, except where the
particle size becomes great compared to the specimen size, i.e.,
where the structural effects would be all important. A large par-
ticle strategically located at the failure surface would materially
affect the shearing resistance of the mass. If, on the other hand,
these particles are small, the effects  structure become less
apparent. For aggregates with relatively large size particles, the
only possibility of minimizing this size effect would be to increase
the size of the specimen.

MR. McLEOD: I believe it is generally agreed that no useful
information can be obtained from testing bituminous paving mix-
tures by the triaxial method, unless the dimensions of the test
specimen are large in comparison with the diameter of the largest



STABILITY DESIGN

aggregate particles in the mixture. We cannot expect to obtain
representative  values if the test specimens are so small ,
that one or more large particles on the plane of failure interfere
materially with the results z There are two quite definite require-
ments for the test specimens of bituminous paving mixtures for
triaxial tests. First, the test specimen must be tall enough with
respect to its diameter that the stability value is not influenced by
the constraints to which the ends of the specimen are unavoidably
subjected  the test, and secondly, the dimensions of the test
specimen must be large enough in comparison with the dimensions
of the largest particles in the paving mixtures, that the stability
value is not materially affected either by the fortuitous presence
of a few more large particles on the plane of failure than their
average distribution through the test specimen would permit, or
by the fortuitous absence of the same number of larger particles
from the plane of failure.

PROF. VALLERGA: What was the size of the specimen you
used and what was the maximum size of the particle you used?

MR. This paper has presented a theoretical analy-
sis of the design problem. However, those who have done consid-
erable work on the triaxial testing of bituminous mixtures recom-
mend that the diameter of the test specimen should be from four
to six times the maximum dimension of the  The
figure of four times may be a liberal value, while six times ap-
pears to be conservative.

PROF. VALLERGA:. In order to what?
MR. McLEOD: In order to eliminate any material effect on the

stability value due to either the presence of a few more large par-
ticles on the plane of failure than their average distribution
through the test specimen would permit, or the absence of the
same number of large particles on the plane of failure.

MR. V. A. ENDERSBY: What I am going to try to do is add a
little more confusion to this argument. I just wanted to point out
that it is a difficult job to  this question. Let’s see how the
Mohr envelope is normally arrived at.

You draw the circles and then you draw a line tangent to them,
and the closest you can get to the origin is where this line comes
tangent with your zero circle. You don’t know where it goes
from there.- It can go straight on or come down through the origin
on  curve, As a result of a lot of work done on that matter by
Shell Development Company, we found that where you have a
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curved envelope and this condition, your envelope acts like that,
and if you adjust temperatures, pressures and speed of loading,
you can get down to an extremely small zero circle here; the en-
velope comes tangent to that circle as it goes through the same
origin, so unless you have a straight line through all of these cir-
cles, tangent to all of these circles, you will have no certainty
that this projection actually represents something real. Even if
you have a straight line tangent to all of them, it is only an infer-
ence that it continues straight all the way to the origin.

We found, though, that what has been said about interference of
particles and dimensions and so on is quite correct. You get a
very systematic family of curves as you shorten up the test speci-
men which implies pretty clearly that the reason for the curvature
is an outside influence, and that ties in perfectly with what we are
pointing out in particle arrangements. It has been obvious that
the shorter your sample is, the more effect those particle ar-
rangements are going to have. Therefore, my view of it is that
this curvature represents such structural effect, pure and simple,
and the extent of it depends on the dimensions of your sample. So
I don’t have any particular argument with either of the previous
speakers, except that I wanted to show that it is not too sure what
you have in the way of an intercept.

MR. N. W. McLEOD: If I understand Mr. Endersby’s comments
correctly, they imply that the curvature of the Mohr envelope when
it occurs, is due to a low ratio of height to diameter for the test
specimen, provided the ratio of specimen diameter to largest par-
ticle diameter is adequate. If curvature of the Mohr envelope
could always be explained on this simple basis, it would greatly
simplify bituminous pavement design. However,  am not too op-
timistic in that  As a matter of fact, it wasassumed in the
paper that curvature of the Mohr envelope is a fundamental prop-
erty of certain bituminous mixtures, and curvature of the envelope
due to what might be termed accidental or easily controllable
variables, such as ratio of height to diameter of the test specimen,
was specifically excluded. Possibly this assumption was too
hastily made, and it might be both instructive and useful to
deavour to determine the various causes of Mohr envelope curva-
ture, since the design procedure to be employed in each case
might be somewhat different.

I am not convinced that we need to be unduly concerned with the
shape of the part of a curved Mohr envelope to the left of its point
of tangency with the Mohr circle representing the unconfined com-
pressive strength to which Mr. Endersby has just referred. We
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cannot explore the location of this portion of the Mohr envelope by
means of the triaxial test in any case, although under certain con-
ditions we might make use of the direct shear test for this purpose.
It is the part of a curved Mohr envelope to the right of its point of
tangency with the Mohr circle representing the unconfined com-
pressive strength that is of primary concern, since this portion
includes the stresses to which the pavement is actually subjected
by traffic. As indicated in the paper itself, this part of the Mohr
envelope can be represented by a parabolic equation. After the
Mohr circle representing the conditions of stress for the most
critical element within the pavement has been located, the tangent
common to both it and the envelope provides the values of  and
that are required for pavement design.

MR. C. A. CARPENTER: Mr. Chairman, I am glad Dr.
McLeod left his circles on the board. In our experience, and I
don’t offer this as the final answer, but in our experience with
this test, we have developed both straight Mohr envelopes and
curved ones of the same type that Dr. McLeod is describing. Our
experience is that we get our curvature when there is a change in
the density of the specimens during the test. As the density of the
specimen increases, and this occurs on workable type mixtures
where compression, slowly applied, can cause some additional
compaction, we get this gradual flattening of the friction curve.
If compaction is related to the general tendency of that type of
envelope to curve, then I don’t believe the parabola has any par-
ticular bearing on the situation, because I think that at each point
on the curve a tangent to the curve extending through an intercept
on the Y ordinate represents the conditions in the mixture at that
particular stage of compaction.

Now, if we are working with a mixture on which we know that
the wheel loads will be light, say thirty pounds per square inch,
we are interested in the slope and intercept for some comparable
test condition, but if we are going to be dealing with two-hundred
pound tire pressures then we should go out on the curve and de-
termine the intercept and slope at a point corresponding to this
loading.

PROF. VALLERGA (by letter): In the discussion following Dr.
 excellent paper, it was brought out that his theoretical

treatment of the subject of curved Mohr envelopes was based on
test data which indicated both a definite curvature of the envelope
and an intercept on the ordinate axis. My purpose in asking ques-
tions was to ascertain whether Dr. McLeod had considered the
possibility that the test data he used were unduly influenced by
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such things as the relative size of the aggregate particles com-
pared to the size of the specimen, the manner of loading the speci-
men (including rate of loading), the effects of the confining rub-
ber membrane (if one were used), the specimen dimensions, par-
ticle orientation, particle location, etc z

From data being accumulated at the University of California, it
appears that this matter of triaxial testing of aggregates, with or
without asphalt added, is still not a settled issue especially if one
takes the view that the fundamental strength properties of the ma-
terials should be evaluated. The philosophies and techniques of
triaxial testing are such that an intelligent interpretation of the
results obtained requires a thorough knowledge of the specimens
and all the details of test procedure. Furthermore, I am almost
certain that the curvature of Mohr’s envelope of failure and the
apparent intercept on the ordinate for these materials are merely
effects produced by particle size relative to specimen size, size
of specimen, kind of loading, limitations of test equipment and in-
strumentation and, finally, improper interpretation of the test data.
I submit that, when all of these factors are taken into account, the
true envelope for any mass of granular material is a straight line
which passes through the origin and whose inclination is a function
of the resistance to sliding of particle on particle.

Interlocking is not a factor, I  because it is merely a
manifestation of the frictional resistance between particles, In
other words, with no friction there can be no interlocking in an
aggregate mass. Also, I do not believe that the general 
the specimen size should be at least four times the maximum di-
mension of the largest particle is sufficient to eliminate  the
effects of large particles.

I am not prepared at this time to go into any further detailed
discussion. The intent of these additional comments is to clarify
and add to my remarks at the meeting.

DR. CHARLES  (by letter) Dr.  is to be con-
gratulated for his paper. This paper deserves special commenda-
tion for treating the case of a curved envelope to Mohr’s stress
circles in view of the general tendency to take only linear tangents
into consideration. Defining by  the stress normal to the shear
plane, by  and  the principal compressive and tensile
stresses, by  the shearing stress along the plane,  by a the
angle which the shear plane makes with the horizontal, then

 = +
2 2 cos 2a

 Oil Ltd.,  Ontario.
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giving the expressions for the normal and the shearing stresses in
terms of the principal stresses. These equations hold, irrespec-
tive of whether a is constant or not. For the case of a constant,
the tangent to the Mohr circles is linear and the shearing stress
is

Where C is usually termed “cohesion” and  is the constant angle
of internal friction 45 +  The so-called cohesion is the
intercept of the tangent on the  axis and is a shearing stress, viz.,
the shearing stress  at  0. This condition is fulfilled for a
state of pure shear in the plane of  shearing stress,

=  Introducing these terms
into eq. (1) and (2) gives = 0,  =  and the “cohesion” is
equal to the yield value. At stresses  than the yield value,
the system is in the elastic region. In this region, the stresses

= 0,  = 0, every particle retains its
neighbors. At  in excess of the yield value, the system is
in  plastic region. This type of deformation is accompanied by
the formation of shear planes and shift of the particles,. In the
simplest case, the shear plane makes an angle of  with the

 in the case of compression. If the shear is’ 
panied by rotation, this angle becomes 45  ‘where  can be

 or variable. With  = constant eq. (3) holds, with  being
variable, Dr.  treatment holds true, and the  to
the stress circles is a curve. If the envelope is parabolic 
shape, then in general

where a and B are constants. Dr.  considered the special
case of a = 2, however, a may have any value larger than  The
general eq. (4) becomes equal to eq. (3) with a  tan 
Another possible case is that the normal stress  can. be an 
ponential function of A variable angle  is connected with
structural changes in the material under stress.

In any part of the road structure, be it bituminous pavement,
basecourse or subsoil, the particles are distributed at random,
when the material is compacted under lateral constraint. The long
axes of the particles make any angle with the horizontal. Loading
of a material compacted in this manner will cause a rotation of
the particles in the direction of plastic flow. This orientation is
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accompanied by an increase in the value of the angle  and
by hardening as a function of stress and time as shown by
the writer (C.  Proe. A.A.P.T. Vol. 16, p. 264, 1947). The
hardening effect can be also demonstrated by a curved envelope
to the stress circles. Let A B in the attached diagram, Figure I
be such an envelope. A tangent to a point C intersects the shear-
ing stress axis at point D. Thus the shear resistance has in-
creased from the original value  = OA to  = OD.

0

Fig. I

In the extreme case of orientation, all particles lie flat in the
horizontal plane under compressive stresses. This process is
accompanied by an increase of the angle  =  +  from its
original value to a final value of =  +  =  +  = 
in which case, eq. (2) becomes

 =2  sin  = 02

i.e., at this point, the shearing stress is zero, irrespective of the
values of  and Hence the yield value of the material has
increased from an original value of  =  to  =  max.,
and at this point, the material behaves like a solid under
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compression within the elastic region. A rotation of the particles
into a more orderly arrangement is accompanied by an increase
in density. It is at this point where  approaches zero or where
the shear resistance has its maximum value, which determines
the maximum strength of the material. At principal stresses, 
and in excess of this point, the particles can rotate again and
the density decreases. It can happen in this region that the enve-
lope to the stress circles continues as a straight line. Such a 
haviour has been demonstrated by Prof. Vallerga on the board for
a subsoil. It has to be borne in mind, however, that it is the point
of inflection which defines the maximum shear resistance, where-
as an extrapolation of the linear Mohr envelope leads to a shear
resistance of low or zero value.

Mohr’s representation of stress is generally applied to data ob-
tained from the so-called triaxial test, and a few remarks in this
connection may be appropriate. The triaxial test is a compres-
sion test with simultaneous application of a lateral pressure. If
compression develops a shear plane, then the compressive stress

is accompanied by a tensile stress  acting at an angle of
 to the direction of the compressive stress. Let the vertical

pressure be  = and the lateral pressure  Taking the com-
pressive stress with a positive and the tensile stress with a nega-
tive sign, it is generally assumed in the interpretation of the 
axial test (although not explicitly stated) that

or with  = 

This condition is met with the “closed” system, where the lateral
pressure is allowed to build up as a result of the vertical pres-
sure applied until equilibrium is reached. For the “open” system
a lateral pressure of given magnitude is applied and kept constant.
In this case, it remains doubtful whether eq. (7) is applicable or
not, and to the writer’s knowledge, no proof so far has been given
in the literature for the validity of this assumption.

With regard to the operation of the open system cell, the test
can be carried out to failure, at a constant rate of deformation or
until a given rate of deformation is obtained. Since the test is
carried out for the plastic region of the material, and plastic de-
formation is a function of time, it is only the latter two methods
which take the time factor into consideration. It has been shown
by the writer (see above reference) that for unconfined compres-
sion, the compressive stress is a function of the product of the
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strain rate,  = d  t and of time t or, in general
=  t)

This equation holds also for the triaxial test, in which case 
has to be reduced by the lateral pressure. The time appears ex-
plicitly in eq. (8) because the mechanical behaviour of road struc-
tures, in which we are interested, depends upon their history.
This history refers not only to the state of particle arrangement
obtained by work done to the material previous to testing, but also
to the manner in which the test is carried out. It can be shown
from eq. (8) that the shear resistance increases with increasing
strain-rate or rate of deformation, a result which gives the ex-
planation as to why the compressive strength increases with in-
creasing rate of deformation. The discussion in connection with
the triaxial test may suffice to show that, as long as the 
mentioned factors are not taken into consideration, the test leads
only to an accumulation of data which cannot be properly analyzed.

MR.  G.  (by letter): Asphalt technologists should be
greatly indebted to Mr. McLeod for his thorough and arduous ef-
forts to fill in the gap between the sometimes highly theoretical
concepts involved in laboratory or field testing and the actual ac-
tion in practice of asphalt mats under traffic. The present paper
spotlights some of the factors that exist in practice and may have
important aspects in the application of test data to design in the
field. It seems to the writer that two points in the discussion
merit comment, as follows:

 The Lateral Restraining Effect of the Tire and the Base:
Mr. McLeod shows that any restraining effects by the tire and
by the base underneath the mat which tend to restrict lateral
flow of the mat can greatly increase the resistance to displace-
ment exerted by that mat. ‘His analysis shows that this is great-
ly dependent upon the amount of such restricting stresses, as
influenced by the coefficient of friction, for example. His data
indicates that, with such  of friction falling anywhere
within the range normally observed in actual tests, the resist-
ance of the mat could be greatly increased. The corresponding
implication is that, since such coeff  unquestionably exist,
the tire and perhaps likewise the base do offer appreciable
lateral resistance to displacement; and therefore such effects
can be counted upon, at least as an added factor of safety.. This
implied conclusion is in the writer’s opinion entirely erroneous.

In his analysis Mr. McLeod ignores the fact that for a ma-
terial to  a resisting stress a corresponding resisting
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strain must first be built up. The amount of lateral movement
required to create horizontal resisting stresses to the magni-
tude indicated by the analysis of the paper would involve later-
al displacements so great that a considerable plastic flow would
have occurred in the much less elastic pavement surface. It is
true that, if plastic deformation to this degree did occur under
the tire during its period of contact at that point, the lateral re-
sistance visualized would be built up. However, I think it will
be agreed that a surface which showed such displacement would
be a highly unsatisfactory one even if, due to the tire resistance
finally built up, further movement did not occur z

The lateral resistance which might be offered by the base is
a rather different situation. Possibly the order of magnitude of
the strains involved is sufficient to build up the stresses re-
quired without undue deformation in the mat. However, to limit
the resisting strain to this magnitude may require in addition
to the usual shearing and other resistances, some tensional re-
sistance in the base as well; yet such tension is rarely ob-
served except in the case of mats laid over rigid slabs. In fact,
the surface mat is the one element in the usual flexible road
structure which does have some ability to resist 
dynamic at least--and therefore it seems difficult to consider
the usual base under this mat as offering as much lateral re-
sistance and hence resisting strains to such extent as to in-
crease the resistance of the mat itself. If this theory (that the
stability of the mat could be increased due to the presence of
lateral stability in the layer below) is correct, it would be logi-
cal to consider the top inch of mat as able to resist the load for
this reason and so on for each succeeding layer below. The
possibilities are obviously so complex as to make the drawing
of final conclusions difficult.

Mr.  analysis does have one very interesting and
helpful conclusion, in that it shows a load applying medium
which is capable of giving lateral resistance may  a
much higher stability in the surface than would occur through
the action of the ordinary pneumatic tire. A steel plate is ex-
actly such a medium. Its coefficient of friction may not be
high, but its very high coefficient of elasticity assures the
building up of the lateral strain to the degree that this coeffi-
cient of friction permits. It therefore seems quite safe to con-
clude from Mr.  analysis that the resistance shown in
plate bearing tests might be quite different from that offered to
the actual tire, and for this reason (as well as others) the re-
sults from plate bearing tests need thorough and exact
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correlation with the actual effects of load application through
tires, such work reflecting field rather than laboratory condi-
tions .

2  General Theory: While the reasoning is less clear and
exact, involving as it does the fundamentals of scientific phi-
losophy, it seems to the writer that the very subject of Mr z

 paper questions the validity of the method it outlines.
An effort will be made to briefly present the reasoning behind
this remark.

The basic premise of the triaxial determination of the angle
of friction and cohesive strength of the aggregate-bitumen mix
is that the relationship between the vertical and lateral stresses
in the loaded pavement resisting displacement is the same as
exists in the laboratory specimen when subjected to a uniform
vertical loading and a simultaneous lateral pressure. The
formulae relating these quantities given in the paper is true for
an infinitesimal element at any point on a plane. For it to hold
true throughout the sample mass, we must integrate these in-
finitesimal stresses over the area of this plane.

Obviously we cannot do this. The material is 
ous and non-isotropic. It is impossible to evaluate the integral
over the whole area in terms of constants for the composite
material. Even if possible, such an integration would change
for each plane passed through the point. We are therefore
forced to the assumption that the material will act in practice
in exactly the way an equivalent material which is homogeneous
and isotropic and shows the same relation between the vertical
and horizontal stresses at failure as the sample tested. Such
an assumption might be quite valid, but its reliability must be
appraised by further studies of the actual material in question.
For example,  homogeneous and isotropic material which is
not altered over the test range will give a Mohr envelope which
is a straight line. The existence of such a straight line envelope
has therefore been taken as one good bit of evidence that we
could assume the quite unhomogeneous bituminous mix could be
represented by analyzable material with which the theories of
soil analysis could be applied and safely used. However, the
fact that the Mohr envelope line is curved seems to the writer
to be good evidence that the basic assumption involved in the
analysis, and permitting the use of the equation of the article,
is unsound; and therefore the applicability of these equations
with any angle of friction and cohesion derived from the data
is questionable z
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It is, of course, quite possible that the action of the actual
mix dealt with will be similar to that of some homogeneous and
isotropic material with an unknown angle of friction and co-
hesive resistance; but to the writer it seems unsound to esti-
mate its properties from the test characteristics displaced by
the actual material at any point on the Mohr diagram z It must
be remembered that the action of the sample under test is quite
different from the action of the pavement under load. The sam-
ple has a uniform applied lateral pressure as well as a uniform
vertical loading. In the actual pavement the stress may or may
not be uniformly applied, but the resistance built up throughout
the resisting mat varies throughout that mass. This resistance
at any point is dependent upon the strain at that point, and this
varies from a maximum at some point down to nothing; conse-
quently the resistance of the mat is a composite effect involving
resistance elements varying in stress intensity. The field
stresses therefore concern every point on the Mohr envelope
up to the point of maximum stress intensity; the cohesive re-
sistance and angle of friction derived from some part of the
Mohr diagram cannot be safely assumed that involved in the
field resistance; the field resistance will be a composite effect,
combining these varying constants in some unknown fashion.
The discussion of this point and the preceding one are charac-

teristic of a situation which is often encountered in problems in-
volving soils or similar materials. The assumptions made in the
analysis, while appealing, represent what might occur rather than
what assuredly does occur. Soils are two dimensional quantities,
yet there is a continual effort to evaluate the resistance of soil by
one constant. Bituminous mixtures have a highly involved internal
structural action, yet there is a continual attempt to apply the re-
lationships worked out for materials of extremely simple proper-
ties to them. It is perfectly sound engineering to attempt to cor-
relate test properties of these mixes with their action in the field,
but this  cannot depend upon assumptions which are ap-
pealing but not susceptible of proof. That such assumptions often
seem to give excellent correlation for a certain proportion of the
cases tested is not a justification for their use. We perhaps have
a similar situation in another field of structural analysis. The
theory of least work often results in stress calculations which are
surprisingly close to those actually observed. It is a pleasing
theory to assume a structure will so adjust its stresses that the
minimum work is done in carrying the load, but elastic analysis
shows that the structure does not always adopt this engaging
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procedure. In the same way the application of the simple theory of
soils has great appeal, and it is possible that it will be proven
workably sound in the case of a straight Mohr envelope. It seems
to the writer that its application in the case of curved envelopes
must be preceded by convincing proof that this is justified, fol-
lowed by confirming field correlations. Similar practical proof
seems needed that tires supply appreciable lateral support to the
pavement before this reinforcing effect can be counted on.

MR. McLEOD (author’s closure by letter): The discussion of
this paper by Messrs. Endersby, Vallerga, Carpenter,  and
Nevitt are greatly appreciated, for they have added much to the
general subject under consideration, and have given emphasis to
a number of points that clearly require further investigation.

It should be pointed out that several of those who have contri-
buted to this discussion have referred to a problem that was con-
sidered to be outside the scope of the paper itself; namely, what
factors are responsible for the curvature of the Mohr envelope.
It is of interest to list the various causes of Mohr envelope curva-
ture that have been suggested.

Professor Vallerga states that “the curvature of  en-
velope of failure and the apparent intercept on the ordinate for
these materials are merely effects produced by particle size rela-
tive to specimen size, size of specimen, kind of loading, limita-
tions of test equipment and instrumentation, and finally, improper
interpretation of test data. Mr. Endersby believes that “this
curvature represents that structural effect pure and simple, and
the extent of it depends upon the dimensions of your sample.”
According to Mr. Carpenter, “we get our curvature when there is
a change in the density of the specimens during test,” while Dr.

 states, “The hardening effect can also be demonstrated by a
curved envelope to the stress circles 

It is quite apparent, therefore, that considerable difference of
opinion exists concerning the cause of the curvature of the Mohr
envelope. While the author recognizes the importance of this
problem, little or no reference has been made to it in this paper
because it could quite obviously be the subject of several articles
by itself. For the present paper, it has been assumed that a
curved Mohr envelope is a fundamental and not an accidental, for-
tuitous, or controllable characteristic of certain bituminous pav-
ing mixtures. The paper accepts this as a fact, without inquiring
into the cause of the curvature, and proceeds to outline a method
of design for such paving mixtures. The paper should be read
with this distinction clearly in mind.
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There are several theories of failure for various types of en-
gineering materials, e.g., maximum shear stress, maximum nor-
mal stress, maximum normal strain, the internal friction theories
of Coulomband Mohr, etc. One or more of these theories may hold
quite well for one class of engineering materials, but not for anoth-
er. The Coulomb and Mohr internal friction theories seem to pro-
vide reasonable criteria of failure for soils, aggregates, bituminous
paving mixtures, etc z They assume that shearing strength is due
partly to a shearing resistance that can be developed even under zero
normal stressand partly to a shearing resistance that consists of
an internal resistance tosliding which is similar to friction in ac-
tion. While the Coulomb theory of failure calls for a straight line
relationship between shear and normal stresses, it should be care-
fully observed that  theory of failure does not specify either
a straight line or curved envelope. Mohr left the shape of the en-
velope to be established by the experimental data for the material
under test. Generally speaking, therefore, the Coulomb theory of
failure, which specifies a straight line envelope, is simply a spe-
cial case of the more comprehensive Mohr theory of failure.

The principal basis of support for the assumption of a straight
line Mohr or Coulomb envelope when it occurs, is the fact that the
triaxial or direct shear test data give a straight line envelope when
plotted. Consequently, no further basis of support is required for
the assumption of curved Mohr envelopes’for certain bituminous
mixtures than the fact that triaxial data for these paving mixtures
provide Mohr diagrams for which the Mohr envelope is curved.
In the latter case, the further assumption is made, at least as far
as this paper is concerned, that the curvature of the Mohr envelope
is a fundamental characteristic of certain paving mixtures, and is
not due to controllable factors such as lack of adequate compaction,
low ratio of height to diameter of the test specimens, etc.

Mr. Carpenter’s brief account of his actual experience with the
triaxial testing of bituminous paving mixtures provides a valuable
addition to this discussion. He states that he has obtained both
straight and curved Mohr envelopes and believes that curved en-
velopes are due to the increase in density of the test specimens
as the triaxial test proceeds. As previously explained, in the
paper itself curvature of the Mohr envelope due to inadequate com-
paction of the test specimen was ruled out as being an accidental
or controllable, rather than a fundamental cause of  envelope
curvature. Mr. Carpenter’s experience may indicate that this is
a too rigid restriction.

Possibly the rather brief outline of the design of bituminous
paving mixtures with curved Mohr envelopes given during the
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presentation of the paper was not as clear as it should have been.
However, the approach described was somewhat similar to that
suggested by Mr. Carpenter. The Mohr circle representing the
stress conditions for the element of pavement that will be sub-
jected to the most critical loading anticipated in service must first
be located on the Mohr diagram. The tangent to the curved enve-
lope at its point of tangency with this critical Mohr circle gives
the values for c and  to be employed for design. As indicated in
the paper, either a graphical or rigid mathematical method can
be employed for this purpose. For the latter, it is necessary to
assume that the portion of the curved Mohr envelope correspond-
ing to the range of stress conditions under consideration can be
represented by a parabolic or exponential, etc., type of mathe-
matical equation, in order  values for c and  given by the
tangent to the critical Mohr circle can be calculated.

In his written discussion, Professor Vallerga gives added em-
phasis to his point of view that for properly prepared and tested
specimens of bituminous paving mixtures, the Mohr envelope is a
straight line that passes through the origin. He suggests that
either a straight or curved Mohr envelope that makes an intercept
on the ordinate axis is an indication of improper specimen prepara-
tion or testing.

There is considerable evidence that this may be the case for
cohesioriless sand, gravel, etc. (See  Shear Research
and Pressure Distribution Studies,  Waterways Experiment Sta-
tion, Vicksburg, Mississippi.) On the other hand, when Professor
Vallerga assumes that cohesion c (the intercept of the Mohr en-
velope on the ordinate axis) should always be zero, even after
these aggregates have been mixed with bituminous binders to pro-
vide well-designed bituminous paving mixtures, he has reached a
conclusion that is contrary to the findings of a considerable num-
ber of carefully conducted investigations.

In Volume 20 of the A.A.P.T. Proceedings, values for cohesion
c up to about 40 psi. are shown in Figure 13 of the paper by Hennes
and Wang. In the paper by Goetz and Chen in Volume 19 of the
Proceedings, Figure 10 gives values for cohesion c as high as ap-
proximately 60 psi. In Figures 9, 10, and 11 in the paper by V. R.
Smith in Volume 18, experimental data for various paving mix-
tures are plotted for which values for cohesion c up to about 22
psi. can be observed. Smith’s data are of particular importance
because the values for cohesion c were determined at essentially
zero rate of strain during the triaxial test. This procedure pro-
vides minimum values for c since the viscous resistance factor is
eliminated. Viscous resistance appears as an enlarged value for
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cohesion c in the Mohr diagram for triaxial tests for which a posi-
tive rate of strain or deformation is employed. The paper by
Nijboer in Volume 16 of the A.A.P.T. Proceedings contains data
and graphs for triaxial tests on both sheet asphalt and asphaltic
concrete types of bituminous paving mixtures. Nijboer ‘s paper
presents the results of an apparently very painstaking investiga-
tion, in which considerable trouble was taken to investigate almost
every variable that might influence triaxial test results. In Graphs
1 and 2 of Nijboer’s paper, Mohr envelopes for triaxial tests on
sheet asphalt mixtures conducted at zero rate of strain give values
for cohesion c of 15.6 and 31.2 psi. In Graph 4, for the same con-
ditions of test, values for cohesion c up to about 40 psi. are shown
for sheet asphaltic mixtures, and up to about 60 psi. for asphaltic
concrete mixtures.

Furthermore, in Table 3 of his paper, Nijboer lists actual data
showing that the addition of water to a dry sand provides the co-
hesive influence that we would expect from its  He
demonstrates that this cohesive influence can be measured in a
carefully run triaxial test. The value of cohesion c due to the
moisture was 1.4 psi., when determined by triaxial tests on the
moist sand that he investigated.

Nijboer endeavoured to eliminate any influence on his triaxial
test results due to specimen dimensions, relation of largest par-
ticle size to specimen diameter, etc., which Professor Vallerga
has suggested might be the cause of either an intercept on the or-
dinate axis (cohesion c), or curvature of the  envelope. Con-
sequently, Professor  suggestion that the Mohr envelope
for well-designed and properly tested bituminous paving mixture
does not make an intercept on the ordinate axis appears to be con-
trary to existing published triaxial data,, much  which has been
very carefully obtained.

The various comments made by Dr.  merit serious con-
sideration. As the triaxial test is ordinarily employed for the
testing of bituminous paving mixtures, the terms “elastic region”
and “yield value” do not have much significance, because it is
their ultimate strength in the plastic rather than in the elastic re-
gion that is determined by the triaxial testing of these materials.
The stress strain curves provided by the triaxial testing of bitu-
minous paving mixtures are usually continuous curves, and it is
difficult, if not impossible, to state with any exactitude what por-
tion of the curve pertains to the elastic, and which to the plastic
region. Consequently, Mohr diagrams for bituminous paving mix-
tures represent plastic and not elastic failure.

While Dr.  equation (4) for a curved  envelope could
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be employed to obtain design data for bituminous paving mixtures,
some preliminary-calculations tend to indicate that it would prob-
ably have no advantage over equation (25) selected in the paper to
represent a curved Mohr envelope, and might be slightly more
complicated to use z

 is entirely correct in pointing out that a time factor
should be included in equations involving plastic deformation.
However, his suggestion that triaxial data are of limited useful-
ness, unless this time factor is specifically included in their
analysis, could arouse considerable debate insofar as practical
solutions to engineering problems in flexible pavement design are
concerned.

In the field of soil mechanics it has become customary to em-
ploy equations for plastic behaviour that do not contain the time
variable. Errors due to this omission of the time factor may be
more important in such precise fields as physics or pure rheology
than to the solution of practical problems of engineering. It would
be useful if someone would demonstrate by means of actual calcu-
lations for several practical examples whether or not the error
involved by neglecting the time variable would exceed the factors
of safety ordinarily employed by engineers. So far, in practical
applications of soil mechanics, the error introduced by omitting
the time variable from the equations employed has not been con-
sidered large enough to be serious. On the other hand, the time
factor is ordinarily more or less inadvertently or indirectly taken
into consideration when the triaxial test is run, since the test con-
ditions employed in the laboratory are usually made to duplicate
as nearly as possible the most critical conditions to which the ma-
terial under test is likely to be subjected in the field. Consequent-
ly, the absence of a specific time variable in the equations for
plastic behaviour usually employed for the analysis of triaxial data

probably very largely compensated for by endeavouring to have
the triaxial test procedure duplicate field conditions.

The first points brought up in Mr.  thoughtful discussion
concern the frictional resistances between pavement and tire and
between pavement and base as a source of additional bituminous
pavement stability. Mr. Nevitt refers to these as the “lateral re-
straining effect of the tire and base,” but in this closure they will
be termed “frictional resistances,” to conform to the terminology
employed in the paper itself.

Mr. Nevitt suggests that the lateral strain within the pavement
that would be required to provide sufficient frictional resistance
between pavement and tire and between pavement and base to give
any material increase in stability, would have to be so large that
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the pavement itself would be damaged. In the absence of definite
quantitative data, any opinions on this matter must be inferred
from pavement performance and other sources.

In connection with his point of view, Mr z Nevitt states, “In his
analysis, Mr.  ignores the fact that for a material to
create a resisting stress, a corresponding resisting strain must
first be built up.” The author suggests that Mr. Nevitt appears
to have disregarded the fact that when a stress is applied to any
material a corresponding strain is created within it. That the
frictional resistance between pavement and tire, which is avail-
able for mobilization, may be of considerable magnitude, is indi-
cated by the results of skid resistance tests made by Moyer and
others, in which coefficients of friction between tire and pavement
varying from 0.4 to 0.8 have been commonly measured. For a
loaded truck tire inflated to 90 psi., this means that at the point
of incipient skidding, the tire will exert an average horizontal
stress of from 36 to  psi. on every square inch of its contact
area on the pavement surface. Conversely, before a pavement
could be squeezed out between this tire and a firm base, frictional
resistances between pavement and tire of this order of magnitude
must be overcome.

It is true that in these skid resistance tests the rubber tread
of the pneumatic tire undergoes a much larger strain than the as-
phalt pavement, provided the shearing strength of the pavement is
not exceeded. Nevertheless,in the ordinary operation of a tire on
a pavement, some lateral strain occurs in the pavement due to the
vertical pressure of the tire, and this lateral strain, even when
relatively small, develops some frictional resistance between
pavement and tire that tends to increase pavement stability. This
is clearly indicated by published data for the Hveem Stabilometer
and closed triaxial tests on bituminous paving mixtures. These
tests demonstrate very convincingly that under even quite small
vertical loads sufficient strain occurs in the test specimen to de-
velop a measurable lateral pressure, and this lateral pressure is
quite large for vertical-loads approaching those exerted by truck
tires. These lateral pressures are accompanied by correspond-
ing lateral strains.

It is well-recognizedthat repeated small strains within bitumi-
nous pavements caused by traffic loads provide the kneading ac-
tion that seems to be essential if these pavements are to remain
in good condition. The strains necessary to permit this kneading
action are, therefore, not detrimental to the pavement, and in ad-
dition they are a source of frictional resistance between pavement
and tire that tends to contribute to pavement stability.
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Mr.  also questions that frictional resistance between
pavement and base is a source of pavement stability. The author
is convinced that Mr.  comments in this respect are
thoroughly refuted by pavement performance in the field. It has
long been known that if there is either no bond or a poor bond be-
tween pavement and base, pavement failure tends to occur due to
sliding of the pavement on the base z Such failure also tends to
take place whenever one layer of a bituminous pavement is poorly
bonded to a lower layer. Consequently, within the author’s experi-
ence, any suggestion that good frictional  between pave-
ment and base is not an important source of pavement stability is
entirely untenable.

The stability value given by a triaxial test on a paving mixture
test specimen is its ultimate strength, which is developed only
after some plastic flow has occurred. Mr. Nevitt is quite right in
pointing out (and it was referred to in the paper itself) that the
amount of plastic flow which takes place before this ultimate
strength can be developed would result in so much lateral defor-
mation of the pavement under the critical design load, that ulti-
mate strength is not a satisfactory basis for actual design. Some
safety factor must be applied to the ultimate strength as given by
the triaxial test, in order that lateral deformation of the pavement
under loaded tires can be kept within acceptable limits. However,
the application of this safety factor only reduces the amount of
strain that will develop under tires, and does not eliminate it.
Even if such relatively large safety factors as 3 or 4 were applied

 to the coefficient of friction between pavement and tire as meas-
ured by Moyer and others, and if a coefficient of friction between
pavement and base of the same order is assumed, the stability
curves of Figures 11 and 14 demonstrate that for a wide contact
area and relatively thin pavement, the frictional resistances be-
tween pavement and tire and between pavement and base would still
be an important source of pavement stability.

It is a matter of common observation that the unsupported edge
of a bituminous pavement will very often sustain traffic loads for
years without collapsing, even when tires travel either along or
partly over the edge. The author doubts that the extraordinary
stability demonstrated in these cases is due merely to the inherent
strength of the paving mixture itself, and believes they provide a
practical demonstration of  important contribution of the fric-
tional resistances between pavement and tire and between pave-
ment and base pavement stability. From these various considera-
tions, others referred to in the paper itself, and other 
tions of pavement performance in the field, the author has
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concluded that the frictional resistances between pavement and
tire and between pavement and base constitutes a potential source
of substantial pavement stability.

Mr. Nevitt states that if these frictional resistances are an
effective source of pavement stability,  should be logical to
consider the top inch of mat as able to resist load for this reason,
and so on for each succeeding layer below.” Possibly the 
does not understand Mr. Nevitt’s comment correctly, for its sub-
stance appears to be the equivalent of suggesting that if a column
of material of a certain cross-section, and one foot long, will not
fail under a given very heavy load, a similar column thirty feet
long will also not fail or buckle under the same load. While the
two cases are not parallel, it seems obvious that one can not ap-
ply this line of reasoning to either column design or pavement
design.

In another part of his discussion, Mr. Nevitt states,  a homo-
geneous and isotropic material which is not altered over the test
range will give a Mohr envelope which is a straight line.” The
paper by  and Wang in last year’s Proceedings makes it
clear that the Mohr circles from triaxial data for a non-isotropic
material (different shear strengths on the major and minor prin-
cipal planes) are so located that a straight line tangent can be
drawn to them also, although the points of tangency do not es-
tablish the positions of the failure planes. Consequently, a straight
line tangent to the Mohr circles representing triaxial data does
not necessarily provide a criterion of isotropy.

In the second part of his discussion, Mr. Nevitt suggests that
the action of a sample under test in the laboratory may be differ-
ent from that of a pavement under load in the field, and points out
that a bituminous pavement may lack both homogeneity and iso-
tropy. For these reasons, he questions that any values of c and
 obtained from a curved Mohr envelope can be selected for bi-

tuminous pavement design. Several of the objections raised by
 Nevitt are theoretically valid, but their practical importance

should be assessed.
After a careful study of the effect of non-isotropy in bitumi-

 paving mixtures, Hennes and Wang in their paper for last
year’s Proceedings (Volume 20) conclude, “Conventional inter-
pretation of triaxial data probably gives a pretty reliable esti-
mate of pavement stability, because of the  deflection of the
slip surface in the case of pavement failure.” In recent work at
Vicksburg, the Corps of Engineers have been investigating stress
strain curves obtained from large scale load tests on soil in the
field, versus the stress strain curves provided by triaxial tests
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on specimens of the same soil in the laboratory. They have been
reasonably successful in developing a technique for the triaxial
test, that provides stress strain curves in the laboratory approxi-
mating those resulting from the field load tests; that is, contrary
to what Mr. Nevitt has suggested, the action of the sample during
a properly conducted triaxial test in the laboratory may not be
materially different from that of a pavement under load in the
field. Furthermore, in connection with pavement design, the
author questions Mr. Nevitt’s statement that “the field stresses
concern every point on the (curved) Mohr envelope up to the point
of maximum stress intensity.’ The author believes that there is
only one point on the curved Mohr envelope in which we are great-
ly interested insofar as pavement design is concerned. This is
the point of tangency between the Mohr circle representing the
conditions of stress on the most critical element of pavement
under the loaded area, and the envelope. On the basis of resist-
ance to failure by squeezing out of the pavement between tire and
base, this critical element is located on the contact area at the
point where the pavement stability curve is just tangent to the tire
pressure distribution curve, e.g., Figures 2, 13, 14, 15, 16, 29, etc.
The c and  values given by the tangent to the Mohr envelope at
this point are the values to be employed in equations 

 or  as a basis for the design of the paving mixture. The
value of the stability V required by this critical element is also
provided directly by equations (43) or (44).

The author cannot concur with the sentiment contained in the
last paragraph of Mr.  discussion. No assumptions are
made in the paper beyond those that are either commonly employed
every day for the solutions of problems in soil mechanics, or that
appear to have been already demonstrated to apply as a result of
the observed performance of asphalt pavements in the field. It
may turn out as Mr. Nevitt suggests, that the rational design of
bituminous paving mixtures is an extremely complex matter. That
remains to be demonstrated. At the present time, through the con-.
tinued use of strictly empirical tests such as Marshall, Hveem,
and Hubbard-Field, the asphalt paving industry has not taken even
the first uncertain steps toward the adoption of a rational method
of design, and it is quite apparent that the weaning process will not
be easy, nor will it occur overnight. It seems reasonable at this
time, therefore, that any proposed rational approach to bituminous
pavement design should be presented in the simplest possible
terms employing the simplest concepts., even though these are only
approximate. After all, the scientific world progressed a long way
on the relatively simple system of mechanics devised by Sir Isaac
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Newton, which still provides solutions that are satisfactory for the
vast majority of engineering problems in the applied mechanics
field. It is for only special cases that the greater accuracy pro-
vided by the newer Einstein concepts of mechanics become im-
portant. Consequently, the author believes that at this time a ra-
tional approach to bituminous pavement design should be presented
in the simplest possible form, even though it may be only approxi-
mately correct. If it should be found that a more complex ap-
proach is necessary for greater accuracy, it can be developed and
applied later as required.


